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Preface

General

Oscillations are extremely important in all areas of human activities, for all sci-

ences, technologies and industrial applications. Any development, any change can 

be interpreted as motion. Any motion is deeply connected with one of the most 

fundamental properties of nature – its ability to react with oscillations at any inter-

nal change or external influence. 

Sometimes these oscillations are harmless, often they can be noticed as noise or 

cause wear. Vibrations, if they are not desired, can be dangerous. But sensibly or-

ganized and controlled vibrations may be pleasant (think of all kinds of music) or 

vitally important (heartbeat). If the oscillations are sufficiently small and the con-

sidered dynamical system is smooth, it can be very helpful to linearize it in the vi-

cinity of some static or dynamic solution and use the corresponding powerful ana-

lytical methods. But in many practical cases the oscillations are either not small or 

the system is not smooth. In these cases a non-linear analysis becomes essential to 

understand physics of the system or of the process. 

“To understand

“

- is the key word here. The main objective of any analysis is 

comprehension. The only systematic way to solve any problem or to improve any 

system is to understand its nature and foresee its behavior. There are different 

ways to obtain the knowledge of the object one is working with. The first and still 

the most important way is the experiment. It is the only way to get any objective 

information about nature. But this way is not a simple one. The problem is not 

only that it is often very difficult and expensive to perform real experiments. Even 

more important is the fact, that the measurement itself never helps a scientist (or 

an engineer) to understand anything, before he tries to interpret it. And the only 

way to interpret anything is modeling. However the experiment always remains 

the last proof of each theory or model. So like two eyes are necessary for spatial 

vision, both modeling and experiment are inevitable for physical understanding. 

Different types of modeling are often used in modern fundamental and applied 

sciences. The main rule says: Models must be as simple as possible and as accu-

rate as necessary. In practice it means, a simple analytic model is often better than 

complex numeric one, if it is sufficiently accurate. On the other hand, if simple 

models are not able to describe significant properties of a natural object, the nu-

meric or even the natural modeling (for example in hydro- and aerodynamics) are 

the only efficient way to achieve comprehension. 

The same statement can be applied not only to natural sciences, but even to 

mathematics. However, the experiments here are mostly numeric. The greatest 
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mathematician of the late 19th and early 20th century, Henri Poincaré, wrote: “Usu-

ally an equation was considered to be solved if the solution had been expressed in 

a finite number of known functions. But this is only possible in one case out of 

hundred. What we always could do, or better should do, is to solve the problem 

qualitatively. This means trying to find the general form of the curve which tracks 

the unknown function.” (Henri Poincaré, Science et Méthode). 

This idea of Poincaré gave the main direction to the development of applied 

mathematics and mechanics in the 20th century, and it did not loose its actuality 

even now. His methods to find periodic solutions of the perturbed ordinary differ-

ential equations and to analyze their stability [98], caused a mental revolution both 

in the theory of differential equations and in the nonlinear mechanics. It was the 

starting shot for the development of the perturbation methods, being now one of 

the most powerful groups of analytic methods in the theory of nonlinear oscilla-

tions.  

It is interesting that the Poincaré’s statement is also valid for applications. En-

gineers are seldom interested in particular solutions. Usually the parameters of the 

system are known with some grade of uncertainty and the initial conditions are 

very difficult to control. Hence an engineer is interested first of all in general ten-

dencies in the behavior and evolutions of a system, he is working on. To explain 

the main qualitative phenomena and to predict the qualitative influence of specific 

parameters is the task of an analyst and the base for design. Thus approximate 

analytic methods are both necessary and useful. 

Nonlinear Oscillations 

Dozens of brilliant books were written on different aspects of vibrations both 

from theoretical and practical points of view. At least the classical works by Lord 

Rayleigh [108], Poincaré [98] and Timoshenko et al. [126] should be mentioned 

here. Even these three titles demonstrate the main difficulty for students and prac-

tical engineers to find an appropriate balance between sophisticated mathematical 

methods and problems, which are relevant for applications.  

There are excellent textbooks and monographs devoted to different mathemati-

cal aspects of nonlinear oscillations. Bogoliubov and Mitropolskii [23], Bolotin 

[25], Nayfeh [79], Arnold [8], Sanders and Verhulst [114], Guckenheimer and 

Holmes [44], Mitropolskii and Nguyen [75], Nayfeh and Mook [80], Volosov and 

Morgunov [134] and Verhulst [131] can be mentioned here. Being significant con-

tributions to the development of mechanics and approximate methods in the the-

ory of ordinary differential equations and dynamical systems, these books remain 

almost unavailable for the majority of mechanical engineers, first of all, because 

of their mathematical language.  

Books intended for applied scientists and practical engineers are very seldom. 

Most of them are concentrated on qualitative discussion of practically important 

particular effects without addressing generality and mathematical rigor of the used 

methods. The most versatile book of this type is no doubt Panovko and Gubanova 

[85]. But it is also necessary to point to excellent specialized monographs on oscil-

lations in systems with collisions [10, 15, 58, 62, 77], systems with friction [49, 
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104, 130], machines with high frequency vibrational excitation [15, 17, 20, 78], 

autoparametric resonance [129] and chaotic vibrations [76]. 

“Nonlinear Oscillations in Mechanical Engineering” 

The recent book is concentrated on the effects connected with the nonlinearities 

usual in mechanical engineering. These nonlinearities are caused, first of all, by 

contacts between different mechanical parts. So the main part of this book is de-

voted to oscillations in mechanical systems with discontinuities caused by dry 

friction and collisions. Another important source of nonlinearity is caused by ro-

tating unbalanced parts usual in various machines and variable inertias occurring 

in all kinds of crank mechanisms, for example in combustion engines. 

This book is devoted to nonlinear oscillations and is written for advanced un-

dergraduate and postgraduate students, but it may be also helpful and interesting 

for both theoreticians and practitioners working in the area of mechanical engi-

neering at universities, in research labs or institutes and first of all in the develop-

ment departments of industrial corporations.  

Mathematical Methods in This Book 

Perturbation methods, especially averaging and multiple scales are the basic 

approach used in this book. The objective here is to adopt these methods to the de-

scribed class of problems and make their use convenient for mechanical engineers 

without loosing mathematical correctness.  

It was also Poincaré who justified the use of divergent series and introduced the 

concept of asymptotic analysis. The next important step was done in the middle of 

the 20th century in Russia. Krylov, Bogoliubov, Mitropolskii and their colleagues 

[23, 24, 66, 74, 75, 111, 134] suggested and justified the averaging method. This 

method allows the asymptotic analysis not only of stationary or periodic solutions, 

but it is also suitable for transient processes. However, the first successful attempts 

to link perturbation methods with classical variation of parameters were done by 

van der Pol [99] and corresponding ideas can be found even earlier in the works of 

Lagrange [68]. The book by Bogoliubov and Mitropolskii [23] gave a strong im-

pulse for the further development of asymptotic methods both due to clear mathe-

matical proof of the approach and due to the great variety of considered applica-

tions. It is still an interesting and inspiring source for scientists. 

Fast and Slow Motions 

Averaging method clearly displays the main feature of different phenomena 

and processes of fundamental and applied interest taking place in mechanical sys-

tems, which allows developing and using asymptotic methods in nonlinear oscilla-

tions. Very often motions of these systems can be split into some slow evolution 

and overlaying “fast” vibrations of a high frequency at a small amplitude. These 

slow motions describing the evolution of the system are, as a rule, of the main in-

terest for the researcher. 

    VII 
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Several scientists have used this property as the fundamental background for 

the development of further methods and approaches. Two of them should be men-

tioned here. The first one is the method of multiple scales. It was developed by 

Nayfeh and his colleagues [79, 80]. This method is substantially very close to the 

averaging method, but due to its straight forward formulation is very popular in 

physical applications. First of all, the use of multiple scales is very simple for dif-

ferential equations with partial derivatives, even if its accuracy is not always 

proved.

The same can be said about the “method of the direct separation of motions”. It 

was originated in the works of Kapitsa [55, 56]. This method was most generally 

formulated by Blekhman [16 – 21], who also gave numerous examples of its use 

for different problems in mechanics and physics. The method of the direct separa-

tion of motions is even easier to use than the multiple scales. Its accuracy is 

proved for the most typical cases and it was successfully used for systems de-

scribed by both ordinary and partial differential equations [19, 20, 53,119 – 125]. 

The main uncertainty connected with both multiple scales and direct separation 

of motions is that if the considered problem is even a little bit aside the typical ap-

plications the user never knows if the results are correct or not and the method it-

self does not give any instrument to control its accuracy. Averaging to the contrary 

contains a clear way for its mathematical validation including sensible accuracy 

control. If the requirements of the corresponding theorems are not fulfilled in a 

practical problem, there is always a chance to expand the method’s applicability 

by formulating and proving new theorems. This area was and remains the mathe-

maticians’ domain. The author would be very pleased if he could attract their at-

tention to numerous and diversified engineering problems, even though only an in-

finitesimally small subset of this inexhaustible field is touched in the present book. 

Structure 

The book is structured as follows. A short introduction to the problems under 

consideration is given in the first chapter. It includes the standard perturbation 

techniques alongside the usual simplest descriptions of dry friction and collisions 

between rigid bodies.  

Chapter 2 is devoted to vibrations in systems with dry friction. The discussion 

encloses both the self excited oscillations due to the negative friction gradient and 

the friction caused flutter alongside the vibration caused transportation. 

Oscillations in systems with almost elastic collisions are discussed in Chapter

3. The analysis is based on the ideas of the unfolding transformations, which give 

a clear and transparent framework for analysis of one dimensional systems re-

stricted from one side (for example an oscillator near a wall) and from both sides 

(for example the same oscillator in a clearance). 

Systems with strong energy dissipation are discussed in Chapter 4. The main 

idea here is to separate the dissipative subsystem, which moves in many important 

cases as a slave of the almost conservative subsystem (at least in the first order 

approximation). This approach is consequently applied both to systems with 

strong linear damping and to systems with inelastic collisions.  

VIII     Preface 



www.manaraa.com

Preface      XI  

Chapter 5 is devoted to the problem of the significantly nonlinear resonance, 

which occurs always, when the power of an exciter is comparable with the energy 

demand of the machine. It is actually the case in all real machines otherwise their 

drive would be too powerful and expensive. So the practical importance of the 

nonlinear resonance can be hardly overestimated. 

The basic ideas of analysis and elementary effects in systems subjected to 

strong high frequency excitation are discussed in Chapter 6. Stiffening, softening, 

biasing alongside smoothing of dry friction are the main effects illustrated by sim-

ple examples. Misbehavior of the “optimally” controlled pendulum under the in-

fluence of the HF excitation is the advanced example combining several ap-

proaches introduced in the previous chapters. 

Further development and general analysis of systems subjected to high fre-

quency excitation is given in Chapter 7. Especially results concerning systems 

excited due to oscillating inertial coefficients are relevant for applications.   

All the analysis in the present book is based on the appropriately modified av-

eraging. The relevant theorems are formulated and explained qualitatively. 

Mathematical proofs are given in the Appendixes, which can be omitted by read-

ers interested in applications, but are strongly recommended for those interested in 

the development of theoretical approaches. 
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1. Introduction

1.1. Usual Sources of Nonlinearity in Mechanical 
Engineering

The world around us and we ourselves are inherently nonlinear. The simplest ex-

periment illustrating this statement is an attempt to bend a wooden beam. As long 

as the load is small, the deflection of the beam is approximately proportional to 

the applied force. But at some sufficiently large level the beam will simply break. 

This strong and definitely irreversible change is an elementary example of nonlin-

ear behavior illustrating an important feature enforcing us to formulate the first 

statement more precisely. The world is nonlinear, but in many cases, if we con-

sider only small influences and changes, the linear approximation is often suffi-

cient to understand, predict and control its behavior.  

Nonlinearities and their consequences in the physical and technical world are 

highly diversified and the development of the corresponding theoretical frame-

work and mathematical language is still in its infancy.   We would like to start 

with several examples demonstrating the most usual sources of nonlinearity in 

mechanical engineering. 

1.1.1 Geometrical Nonlinearities 

The first and the simplest one are geometrical nonlinearities arising form pure 

kinematics. The first example shows the pendulum (cf. Fig. 1.1), whose dynamics 

is governed by the following equation: 

sin 0
g

l
(1.1)

For small oscillations around the down pointing equilibrium 0  this equa-

tion can be linearized, but if one is interested in large oscillations or even in the 

rotational motions of the pendulum its nonlinearity becomes significant. 

Another example is based on the crank mechanism usual in all kinds of ma-

chines (Fig. 1.2). It consists of a rotating rod, which is attached to a fixed point by 
a spring with stiffness C  and free length 0x . We assume that the spring is linear 
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(the last statement means that the deflection of this spring is proportional to the 

applied force, irrespective of its magnitude.) The governing equation for this sys-

tem has the following form: 

2 2

0

2 2

2 cos
sin

2 cos

CL L l Ll x

ml L l Ll
(1.2)

gg

Fig. 1.1. The mathematical pendulum is one of simplest examples of geometrically nonlin-

ear systems 

l

L

C, x0
l

L

C, x0

Fig. 1.2. The geometrically nonlinear crank 

1.1.2 Physical Nonlinearities 

The assumption concerning the linearity of the spring is also correct only for 

small deflections. Both rubber (Fig. 1.3) and steel (Fig. 1.4) demonstrate nonlinear 

relationships between stress and strain if the applied load is sufficiently large. 
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strainstrain

Fig. 1.3. Stress-strain diagram for a rubber like material 

strain

s
tr

e
s
s

strain

s
tr

e
s
s

Fig. 1.4. Stress-strain diagram for steel 

These two diagrams are the most usual examples of physical or material nonlin-

earity in mechanical engineering. 

1.1.3 Structural or Designed Nonlinearities 

In numerous applications the nonlinear characteristic of a spring is desired. 

Two simple examples of the designed nonlinearities are shown in Fig. 1.5 and 1.6. 

x0 x

F

x0
x0 x

F

x0 x

F

x0x0

Fig. 1.5. Designed hard nonlinearity 

The stiffness of the system of springs in the first example increases as the de-

flection exceeds a certain value 0x , after which the spring on the right hand side 

of the mass gets active. This behavior is usually called hardening and is sometimes 

s
tr

e
s
s

s
tr

e
s
s
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described as a progressive stiffness characteristic. It is achieved here through the 

designed clearance between the two springs. 

F

x

F0

F0

F

x

F0

F

x

F0

F0F0

Fig. 1.6. Designed soft nonlinearity 

The stiffness of the system of springs in the second example decreases as the 

load exceeds a certain value 0F  after which the spring on the right hand side of 

the mass gets active (as long as the external force is smaller that the preload 0F ,

the spring on the right hand side of the mass presses it against the stop and the 

whole frame moves as a solid body.) This behavior is usually called softening. 

These two examples belong to the group of structural nonlinearities and dem-

onstrate how easily the nonlinear characteristic can be designed through appropri-

ate combining of linear components. 

1.1.4 Constraints 

Unilateral constraints are another important example of structural nonlineari-

ties. It is an important source of nonlinearities and it will be discussed extensively 

below. Here we give only one example (Fig. 1.7) showing the pendulum sus-

pended near a rigid wall. 

MMM

Fig. 1.7. The pendulum near the wall and its torque characteristic 

This system is not simply nonlinear. It is much more complex. Some additional 

hypotheses are necessary in order to describe the collisions between the mass and 

the wall. In any case this system cannot be linearized at least as long as we remain 

in the framework of rigid body mechanics. 
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Kinematical constraints (not only unilateral) are an important source of nonlin-

earities. Although Newton’s equations are linear with respect to coordinates and 

forces, the Lagrange’s equations in generalized coordinates (which take con-

straints implicitly into account) are usually nonlinear. Consider the crank mecha-

nism (Fig. 1.8) as an example. 

r
l

F

r
l

r
l

F

Fig. 1.8. Crank mechanism 

Its position can be completely characterized by the angle  between the crank 

and the horizontal axis. The position of the slider can be always expressed in 

terms of this angle: 

2
2

2
cos 1 sin

r
x r l

l
(1.3)

This relationship is significantly nonlinear and lead to Lagrange’s equation 

governing the mechanism: 

2 2 2 2

2 2
2 2 2 2 2

2 2

2
2

2

2

1 1 1

2 2 2

sin 1 cos 1 sin

sin 1 cos 1 sin

1

2

T mr Mx J

r r
J mr Mr

l l

A F x Q

r r
Q r

l l

d T T dJ
Q J Q

dt d

(1.4)

Here
2mr  is the crank’s inertia, M  is the mass of the slider, T  is the kinetic 

energy of the whole mechanism, Q  is the generalized force obtained through the 

relationship for the virtual work.  
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This equation is totally nonlinear, but we would like to attract your attention to 

the second term on the left hand side. It depends on 
2

. It is the consequence of 

the variable effective inertia J  due to kinematical coupling (1.3). This 

nonlinear dependency on the generalized velocities is usual for diverse mecha-

nisms. 

1.1.5 Nonlinearity of Friction 

The last but not least source of nonlinearity which we are going to mention here 

is damping. Damping mechanisms are extremely complex and deeply connected 

with microscopic processes in materials, on their surfaces and in thin fluid films. 

Even the simplest models of viscous damping are nonlinear. Usually they can be 

represented in the following form: 

v
R f v

v
(1.5)

Here R  is the damping force directed against the velocity. The function 

f v  describes how the friction force depends on the magnitude of the veloc-

ity. The usual linear damping corresponds to f v b v . This damping is ex-

tremely rare in applications. The only real case is the stationary flow in a long 

pipe. Nevertheless linear damping is very often used if the real damping mecha-

nism is unknown, but some energy dissipation is necessary for the analysis. 

More realistic is the power law , 1 2f v b v . It describes fluid 

damping at high Reynolds numbers. The case 2  corresponds to the fully de-

veloped turbulent flow, which is typical for air. 

Dry friction in the contact between two surfaces depends both on the relative 
velocity and on the normal force in the contact area: f v N . In the one 

dimensional case of dry friction the relationship (1.5) is usually written as follows: 

sgn( )R N v (1.6)

The friction coefficient  is however not a constant. Even more, the formal re-

lationship (1.6) is not a function. It is not defined for 0v . This special case cor-

responds to the so called sticking and is usually described by a separate coefficient 

s . The friction force during sticking cannot be calculated according to the equa-

tion  (1.6). It is determined by the condition 0v  as long as the calculated value 

doesn’t exceed the maximal value: 
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sR N (1.7)

Slipping starts as soon as the inequality (1.7) is broken if we suppose sticking. 

The simplest Coulomb’s friction law ( const ) is shown in Fig. 1.9 a). The 

friction law taking the sticking friction into account is shown in Fig. 1.9 b).  Fig-

ure 1.9 c) shows the friction coefficient taking into account the negative slope of 

the force–velocity curve at small relative velocities. This decreasing friction coef-

ficient was confirmed in numerous experiments for various friction partners and 

fluids (air, water, oil) between them. Figure 1.9 d) shows finally the regularized 

friction law used sometimes in numerical simulations. It doesn’t take into account 

the possibility of sticking (the vertical line for 0v  is replaced through a quasi 

viscous damping) and is applicable only to investigations in which sticking 

doesn’t occur. 

R

v

R

v

R

v

R

v

a) b)

c) d)

R

v

R

v

R

v

R

v

R

v

R

v

R

v

a) b)

c) d)

Fig. 1.9. Different idealization for dry friction 

Additional information concerning dry friction and the corresponding refer-

ences can be found in Chapter 2. 
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1.2 The Basic Ideas of the Perturbation Analysis 

1.2.1 Variation of Free Constants and Systems in the Standard Form 

The main idea of perturbation methods is to consider systems being close to an 

unperturbed one. It is supposed that the solutions of the unperturbed system are 

easy to find. In other words it is supposed that the unperturbed system can be inte-

grated in a closed form. 

Consider a system 

, ,z Z z t (1.8)

Here 1 is a small parameter. Consider the corresponding unperturbed 

system 

0 0 , ,0z Z z t (1.9)

We suppose that its general solution is known: 

0 , , , ,0
f

z f t C Z f t C t
t

(1.10)

Here C  is the vector of arbitrary constants. Taking C as a set of new vari-

ables, i.e. considering (1.10) as a transformation for the perturbed system (1.8), the 

following equation can be easily obtained: 

0

, , ,

, , ,0

f f
C Z f t C t

C t

Z
Z f t C t

(1.11)

Here  stays for the terms
2O . Taking (1.10) into account and supposing 

the matrix f C  to be not degenerated, i.e. det 0f C  the following 

equation for the new variables C  can be obtained: 

1

0

, , ,Z f t C tf
C

C
(1.12)
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A system in form (1.12), i.e. a system which right hand side is multiplied by the 

small parameter, is called a “system in the standard from” for the averaging 

method. Usually it is written as follows: 

, ,x X x t (1.13)

Here x  is the n -dimensional vector of the state variables, X  is the n-

dimensional vector-function depending on the state variables, time and perhaps on 

the small parameter .

Actually the statement: “The system (1.13) is in the standard form because the 

small parameter stays as a factor in front of its right-hand side” is too simplified. 

The functions at the right hand side of (1.13) have to be in addition bounded and 

smooth, and the time average of the right hand sides must exist (see below). These 

additional conditions are not always easy to satisfy. Even if the unperturbed sys-

tem is a linear excited and damped oscillator (1.14), but the excitation and damp-

ing are not small, it cannot be directly transformed to the standard form (cf. Chap-

ter 6). 

sin , 1 , 1mx x cx a t a O O (1.14)

Nevertheless there are two large and very important classes of systems suitable 

for the perturbation analysis. 

The quasi-conservative, especially quasi-linear systems belong to the first class 

[78]. Many classical examples for the perturbation analysis like Duffing’s and van 

der Pol’s equations [123] belong to this class of systems. Many other examples 

can be found in any classical book concerning perturbations (cf. [23, 79, 80, 99, 

114]). 

Systems with strong excitation, i.e. systems with dominating external and iner-

tial forces, belong to the second class. Numerous examples of such systems can be 

found in [20, 21], some special problems are considered also in [119 – 124]. It is 

usual to write the governing equations for the problems of this class in a slightly 

different form: 

, , , , , , 1x F x x t x t t (1.15)

This form expresses better the fact that the term , ,x t  containing the 

high-frequency excitation, is dominating here (because  is the large parameter). 

There are many different methods for the asymptotic analysis of perturbed dy-

namical systems. First of all, these methods differ according to the type of solu-

tions they deal with. There are numerous methods considering only periodic solu-

tions and their stability. Most of them are based on the ideas of Poincaré and 

Lyapunov.

Another group of methods considers also transient solutions of dynamical sys-

tems, i.e. these methods allow analyzing not only an infinitesimal vicinity of peri-

odic solutions, but also their attraction area.  
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Three of these methods are most popular today. We are going to start with the 

standard averaging. 

1.2.2 Standard Averaging as an Almost Identical Transformation 

Averaging as a perturbation method was worked out in the middle of the 20th

century first of all in the works of Russian mathematicians Bogoliubov and Mitro-

polskii [23, 24, 74, 75] and then developed by their colleagues both in Russia [7, 

78, 82 – 84, 111, 133] and in the West [112 – 114].  

Initial value problems in the standard form are investigated by the averaging.  

0, , , 0x X x t x x (1.16)

Let us firstly introduce the time average of the function X :

0

1
, , lim , ,

T

t T
X x t X x t dt

T
(1.17)

The integration here has to be performed with respect to the explicit time (vari-

ables x  are considered as constant parameters). 

If the function X  is periodic with respect to the explicit time t , the definition 

of the time average can be significantly simplified: 

2

0

: , 2 , , ,

1
, , , ,

2t

t X x t X x t

X x t X x t dt
(1.18)

The main idea of the averaging method is not to try to solve the system (1.16), 

but to try to find another system, being simpler than the original one, which solu-

tions are close to the solutions of the original system for a sufficiently long time 

interval. The simplification which can be achieved using averaging is to eliminate 

the independent variable t  from the considered equations, i.e. to reduce the effec-

tive order of the system by one. 

In order to do it formally (without mathematical proof) for the simplest periodic 

case, the following almost identical transformation can be applied: 

2, ,x u t O (1.19)

It is very important to understand the sense of this transformation in order to 

comprehend the physical meaning of the method. It splits the solution to (1.16) 

into two parts – the large slowly varying part , describing the evolution of the 

system, and the small fast oscillating part u , which is responsible for the oscilla-

tions of the solution around the slow component. 
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We require that the new variable  is governed by the autonomous equation 

2, O (1.20)

Both the unknown function , ,u t , which has to be a periodic function of 

time, and ,  have to be determined by the following procedure. Applying 

(1.19) and (1.20) to (1.16) the following equation can be obtained: 

2, , ,
u

X t O
t

(1.21)

Balancing the terms O  and requiring that u  has to be a bounded periodic 

function, we obtain that this condition can be fulfilled only if  is the time aver-

age of X :

0

0

, , ,

, , , , , ,

t

t

X t

u t X d u
(1.22)

It is usual to choose the free functions 0 ,u  in order to guarantee that the 

time average of the functions u  is equal to zero, i.e. , , 0
t

u t .

It is not the unique possible choice of the functions 0u . Another one is conven-

ient if the equations (1.16) have the Hamiltonian form. Then the free functions can 

be chosen in order to guarantee that the averaged equations also have the Hamil-

tonian form. 

Higher order approximations can be obtained in a similar way. For the second 

order approximation we apply the following transformation: 

2

1 2, , , ,x u t u t (1.23)

We require further that the new variable  is governed by an autonomous 

equation

2

1 2, , (1.24)

Balancing the terms O  we obtain as above: 
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1
1

1 1 1

1

, , ,

, , , , , , , ,

0

t

t

u
X t

t

X t u X t dt

u

(1.25)

Balancing the terms 
2O  we obtain: 

2 1
1 2 1

1
2 1 1 1

x

x xt t

u uX
u

t x

uX X
u u

x x

(1.26)

Finally the equation of the second order approximation is 

2 3

1, ,
x t

X
X t u O

x
(1.27)

The procedure above is purely formal, because it does not explain if we can 

shorten the equations for  neglecting the small terms 
2O  or 

3O  in the 

equations (1.20) and (1.27) respectively. It also doesn’t explain why and for how 

long a time the solutions of the original system (1.16) and those of the shortened 

averaged systems (1.20) or (1.27) are close to each other.  

Answers to these questions were given by Bogoliubov in his first Theorem.

Consider the system (1.16) and assume 

1. X  is a measurable with respect to t  vector-function.  

2. It is bounded and satisfies the Lipschitz-condition with respect to the vector-

argumen x .

1 2 1 2

, ,

, , , ,

X x t M

X x t X x t x x
(1.28)

3. The time average of the function X  exists uniformly with respect to x .

Consider the averaged system satisfying the same initial conditions 

0, , 0 x (1.29)
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Under these conditions the mistake by using the system (1.29) with functions 
determined by the relationships (1.22) instead of the original one has the magni-

tude order of the small parameter  for the asymptotically long time interval 

1/t O .

The proof of this theorem is not very complex. Readers interested in the mathe-

matical background can find it in Appendix I.  

If the averaged system (1.29) has an asymptotically stable singular point in the 

linear approximation and the function X  is continuously differentiable with re-

spect to x  then the original system (1.16) has a solution which remains in the vi-

cinity of this point for infinite time. 

This is the contents of the second Bogoliubov’s Theorem. Its mathematically 

correct formulation and proof can be found in Appendix II. 

1.2.3 Method of Multiple Scales 

“Multiple scales” is surely the most popular method for the asymptotic analysis of 

dynamical systems in the west. It differs slightly in form from the averaging 

method, but is substantially very close to it. The multiple scales technique is very 

simple and straight forward in its formulation, its logic is easy to understand and 

to learn and it is excellently explained in [79, 80]. Thanks to numerous works by 

A.H. Nayfey this method is successfully used for analyzing both ordinary and par-

tial differential equations, although its accuracy is not always mathematically 

guarantied. Correct use of multiple scales in these cases requires deep physical 

understanding of the problem. 

The basic logic of the method of multiple scales can be easily illustrated by 

considering a system in the standard form (1.16). The first step of the solution is to 

convert to two independent variables t  and t , supposing that 

,x , i.e. to convert from the system of ordinary differential equations 

(1.16) to the following system with partial derivatives: 

, ,X (1.30)

The relationship between (1.16) and (1.30) is determined by the condition that, 

if ,  is a solution to (1.30), then ,x t t  is a solution to (1.16). In 

other words, the system (1.30) is more general then the original equations (1.16) 

and any solution to (1.30) taken along the straight line ,t t  satisfies the 

equations (1.16). 

We require ,  to be a 2 -periodic function of  and try to find  as 

a formal asymptotic expansion in terms of :
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0 1, , , (1.31)

All the functions here have to be bounded functions of the fast time . Substi-

tuting this expression into equation (1.30) and balancing the terms with equal 

powers of  the following relationships can be obtained: 

0 0

1 0 1
0

: 0

: , , ,X

(1.32)

The first of these equations means that 0 depends only on the slow time :

0 (1.33)

Substituting (1.33) into the second relationship from (1.32) a simple equation 

for 1 ,  can be obtained: 

1 , ,
d

X t
t d

(1.34)

The function 1 ,  has to be a bounded function of , i.e. its derivative 

can contain only oscillating components. It is possible if the function 
d

d
 annihi-

lates the constant component of X . It means 

, ,
d

X
d

(1.35)

Here the average is calculated with respect to the fast time . Returning back 

to the straight line ,t t  we find that the slow component of the solution 

is governed by the following equation: 

, ,
t

d
X t

dt
(1.36)

The fast oscillating small correction 1  can be calculated as follows: 

0

1 1

0

, , , , ,

t

X X d (1.37)
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Comparing (1.31) and (1.35) - (1.37) with the corresponding relationships from 

the previous subsection describing the averaging method (1.19) and (1.22), (1.29) 

it is easy to notice that they are identical ( 1 u ). Considering the higher order 

terms in the expansion (1.31), the higher order approximations to (1.16) can be ob-

tained by the multiple scales technique. They are the same as those obtained by 

the averaging method. 

1.2.4 Direct Separation of Motions 

The method of the direct separation of motions was originated by Kapitsa [55, 

56], who used it for analyzing a pendulum with a vibrating suspension point. The 

general formulation of this method was given later by Blekhman [20], who de-

scribed it as the most effective method of vibrational mechanics. It was also used 

to solve numerous dynamical problems both in Russia and, in the last 10 years, 

also in the west [16 – 22, 53, 73, 119 – 124].  

Direct separation of motions was formulated originally for systems of second 

order differential equations, but it can be easily reformulated as follows. 

Consider a system of ordinary differential equations: 

, , ,x F x t x t t (1.38)

The basic idea of the direct separation of motions is to consider only the solu-

tions, which are a superposition of slow evolution and fast oscillations. The object 

of main interest is the slow component: 

2

0

,

1
; , , 0

2t

x t t

t t t dt
(1.39)

The next step is to go over from the system of n differential equations (1.38) to 

a system of 2n  integral-differential equations: 

, , , ,

, , ,

, , ,

, , ,

, , , , , ,

t

t

t

t

F F t F

t t

F t F

F t F

t t t t

(1.40)



www.manaraa.com

16      1. Introduction 

The relationship between systems (1.38) and (1.40) is as follows: if a pair 

,  is a solution to (1.40), then x t  determined according to (1.39) is 

automatically a solution to (1.38). It means the system (1.40) is more general than 

the original one. This system is not only more general, but it is at first sight also 

more complex. Nevertheless in many important cases it is easy to solve with the 

assumption that the variable  in the second equation (1.40) is constant. 

The system in the standard form (1.16) can be considered as an example. In this 

case

, 0; , , ,F x t x t t X x t (1.41)

Substituting (1.41) into (1.40) the following equations can be easily obtained: 

,

, ,

t

t

X t

X t X t
(1.42)

It is natural to solve the second equation of the system (1.42) asymptotically: 

0 1 (1.43)

Inserting this expression into the second equation (1.42) and balancing terms 

with the equal powers of the small parameter, it is easy to see, that 

0

1

0

,

, ,

X t

X t X t

(1.44)

Equations (1.44) don’t differ from the equations of the first order approxima-

tion (1.20), (1.22) or (1.36), (1.37). 

Unfortunately neither the method of multiple scales nor the method of the di-

rect separation of motions has a mathematical proof differing from that for the 

standard averaging. 

1.2.5 Relationship between These Methods 

All the considered methods are very useful and efficient in the analysis of oscil-

lating systems. All of them applied to the system in standard form give the same 

result. (It is actually the necessary condition for such a procedure to be called a 

method.) So the choice of one of them in any special case is connected mainly 

with personal preference. From the authors point of view the multiple scales, and 

especially the direct separation of motions, are slightly easier for the practical use 

compared to the standard averaging method. Their main advantage is the straight  
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forward algorithm used to solve the problem, which does not require to initially 

transform the system to the standard form. This transformation may be sometimes 

rather difficult.  

to the standard form. The situation becomes much more interesting if it is impos-

sible to transform a system to the standard form or one of the conditions (1.28) or 

(1.29) is not fulfilled. In such a case it is possible to try any of the described meth-

ods. The problem is how to make sure that the obtained results are correct. The 

main advantage of the averaging method becomes clear in these cases. There is a 

clear way, based on the Gronwall’s lemma, to prove the accuracy of the averaging 

procedure. Thus the method contains the instrument to generalize itself. This 

situation enables researchers move away from pure physical intuition (being the 

most effective in many cases) and to take the path of rigorous mathematical analy-

sis.

1.3 Examples of Elementary Nonlinear Problems Solved 
by Standard Averaging 

Here we give three academic examples of simple nonlinear problems, which can 

be solved by asymptotic methods. 

1.3.1 Instability and Self Excited Oscillations in the Van Der Pol’s 

Equation

Consider the simplest equation with self excitation: 

21 0, 0 1x x x x (1.45)

Damping in this system is negative for sufficiently small values of x . Thus the 

trivial equilibrium 0x  is unstable. For sufficiently large values of x  the term 
21 x  is negative and the effective damping gets positive. The objective is to find 

the limit cycle enveloping the unstable equilibrium.  

The unperturbed system to (1.45) is ( 0 ):

0 0 0x x (1.46)

It is a harmonic linear oscillator. Its general solution is well known: 

0 0sin ; cosx A t x A t (1.47)

Here A  and  are the free integration constants. This solution can be used as 

the transformation in the perturbed equation (1.45): 

But this statement is correct only for systems which are in or can be transformed 
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sin ; cosx A t x A t (1.48)

This transformation is named after van der Pol [99], who suggested it in 1926. 

The new variables A  and  are governed by the following equations: 

2 2 2

2 2

cos 1 sin

sin cos 1 sin

A A t A t

t t A t
(1.49)

This system has the standard form for averaging. It can be averaged with re-

spect to t . The equations of the first order approximation are as follows: 

3

1 1 1

1

1 1

2 4

0

A A A
(1.50)

Index 1 indicates here the first order approximation. These equations have two 

stationary solutions with respect to the amplitude: 

10 110; 2A A (1.51)

The first one is unstable, the second one stable. It describes the stable limit cy-

cle in the original phase plane.  

In this case the averaged system can be integrated completely. The result is 

0
1

1 0

2

1
t t

A
e (1.52)

The constants 0t  and 0  are determined by the initial conditions. Returning 

back to the original variables we obtain the following first order approximation: 

0 0

0 0

1 1

2sin 2cos
;

1 1
t t t t

t t
x x

e e
(1.53)

The stable limit cycle is 

1 0 1 02sin ; 2cosx t x t (1.54)

Examples of the transient solutions with 0 2x  and 0 2x  are shown in Fig. 

1.10 for 0.3 .
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x

x

x

x

Fig. 1.10. Transient solutions of the van der Pol’s equation converging to the stable limit 

cycle 

1.3.2 The Main Resonance in a System with a Small Cubic 

Nonlinearity 

Consider the resonance problem in a system with a small cubic nonlinearity: 

32 cos , 1, ,x x x x a t a O O (1.55)

We assume that the amplitude of the external excitation, damping and the 

nonlinear term are small. 

The unperturbed system corresponding to (1.55) is the same as in the previous 

example. So we can apply the van der Pol’s transformation, which we are going to 

use now in a slightly different form: 

sin ; cosx A x A (1.56)

Here  is the almost uniformly rotating phase. For the unperturbed system 

t const . The new variables are governed by the following equations: 

2 3 3

2 4

2 cos cos cos sin cos

1 2 cos sin cos sin sin

A A a t A

a
t A

A

(1.57)

We are going to investigate the main resonance, i.e. the frequency of the exter-

nal excitation  is close to the natural frequency of the unperturbed system, 

which in this case is equal to one. We can assume that the frequency delay is 

small, i.e. it has the same magnitude order as the small parameter: 



www.manaraa.com

20      1. Introduction 

1 , O (1.58)

Then equations (1.57) can be rewritten as follows: 

2 3 3

2 4

2 cos cos cos sin cos

1 2 cos sin cos sin sin

1

A A a A

a
A

A
(1.59)

Here we have introduced the second phase t . The two phases  and 

 have almost the same rotation speeds. Thus it is sensible to introduce the phase 

difference between them: 

(1.60)

Now we can rewrite equations (1.59) replacing  through :

2

3 3

2 4

2 cos cos cos

sin cos

2 cos sin cos sin

sin

1

A A a

A

a

A

A

(1.61)

This system contains two slow variables A  and . The fast phase  can be 

considered as the independent variable. Thus the system (1.61) has the standard 

form and it can be averaged with respect to . Equations of the first order ap-

proximation are: 

1 1 1

2

1 1 1

1

1
cos

2

3
sin

2 8

A A a

a
A

A

(1.62)

If we are interested in the stationary resonant solutions, we can determine their 

amplitude from the following equations (the right hand sides of the equations 

(1.62) must be equal to zero): 
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10 10

3

10 10 10

cos 2

3
sin 2

4

a A

a A A
(1.63)

The stationary amplitude is determined by the algebraic equation 

2

2 2 2 2 2

10 10 10

3
4 2

4
A A A a (1.64)

This equation can have up to three positive solutions. The corresponding reso-

nance curve is shown in Fig. 1.11. 

A A
a) b)

A A

Fig. 1.11. Stationary resonant amplitudes; a) the hard nonlinearity 0 ; b) the soft 

nonlinearity 0

It is easy to show that the upper and the lower branches of these curves are sta-

ble (solid line) and the middle branch is always unstable (dotted line). 

An important indicator of the resonance in a nonlinear system is the difference 

between the stationary amplitudes if one increases (or decreases) the excitation 

frequency. Consider the hard nonlinearity for example. If we increase slowly the 

excitation’s frequency, the amplitude follows the upper curve as long as possible. 

Then it falls down abruptly and follows the lower curve. If we decrease the fre-

quency beginning with a high level, which is over the resonance, then the ampli-

tude follows the lower curve as long as possible and then jumps up to the upper 

curve. Thus the amplitude in the first case is larger than in the second case.  

If we consider the soft nonlinearity then everything is the other way round.   

Further discussions of this standard problem can be found in the textbooks [80, 

120]. 

1.3.3 Secondary Resonances in the System with Cubic Nonlinearity 

and Strong Excitation 

The considered resonance at 1  is the strongest but not the only one in the 

system with cubic nonlinearity. Let us assume the amplitude of the excitation is 

not small and investigate if additional resonances are possible in that system: 
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32 cos , 1, 1 ,x x x x a t a O O (1.65)

The unperturbed system corresponding to (1.65) is ( 0, 0 ):

0 0 cosx x a t (1.66)

Its general solution can be easily obtained if we exclude the main resonance 

from the further analysis ( 1):

0 2

0 2

sin cos
1

cos sin
1

a
x A t t

a
x A t t

(1.67)

A  and  are the free constants here. We apply the modified van der Pol’s 

transformation based on the solution (1.67) in order to investigate the perturbed 

system: 

2

sin 2 cos ; cos 2 sin

1
2 1

x A t x A t

a
O (1.68)

The new variables A  and  are governed by the following equations: 

3

3

2 cos cos 2 sin

cos sin 2 cos

2
1 sin cos 2 sin

sin sin 2 cos

A A

A

A
A

A
A

(1.69)

What is a resonance in such a system? Resonance is such a combination of pa-

rameters that the time average of the right hand sides gets discontinuous. The ba-

sic idea behind this definition is as follows. Consider a product of two trigonomet-

ric functions 1 2sin sint t . Its time average is always equal to zero except one 

parameter combination 1 2 . Then the time average is equal to 1 2 . Thus 

this parameter combination corresponds to the resonance.  
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Let us investigate how this definition works for the system (1.69). These equa-

tions can be transformed to more convenient form if we use trigonometric identi-

ties:

3 3 1
4 4

3 3 1
4 4

2 1 1
4 4

cos cos cos3

sin sin sin 3

cos sin cos cos3

x x x

x x x

x x x x

(1.70)

 Applying (1.70) to (1.69) one obtains: 

2 3 3

2

2

3

2 4

2

3

2 cos 4 cos sin cos sin

3
cos cos3 cos

2

3 sin 2 1 cos 2

2 cos 3cos cos3

4
1 sin 2 sin sin sin

3
3sin sin 3 cos

2

3 1 cos 2 1 cos 2

2 sin 3cos cos3

A A A

A

A

A
A

A

A

(1.71)

Which terms in these equations can produce a discontinuous average? In order 

to see that we can replace  through t  and  through t . Then it becomes ob-
vious that the main resonance corresponds to the parameter constellation 1 .

This case was investigated in the previous subsection. There are however two fur-

ther parameter constellations producing discontinuous terms: 

3 cos3 cos

1
cos cos3

3

(1.72)

These frequencies correspond to the secondary resonances in our system. 

Let us consider the first case 3 . Here the natural frequency of the lin-

earized system is smaller than the frequency of the external excitation. The corre-

sponding resonance is called “sub-harmonic”.  
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In the second case 1 3  and the natural frequency is larger than the fre-
quency of the external excitation. The corresponding resonance is called “super-

harmonic”.  

Approximate predictions for the stationary amplitudes in these cases can be ob-

tained similarly to the previous subsection. The corresponding results can be 

found in [80, 120]. 

1.4 Axiomatic Theory of Collisions 

Great attention in the present book is paid to discontinuous systems, first of all 

to systems with friction and collisions. Theory describing collisions of solid bod-

ies doesn’t belong to standard courses in technical mechanics for engineers. Thus 

we give here a short overview of the classical stereo mechanical theory of colli-

sions. 

Theory describing collisions of solid bodies is very complex and not really 

completed yet. Different approaches based on formal axioms are developed in [4, 

77, 109, 135]. Physical modeling based on the wave propagation in the colliding 

bodies is discussed in [52, 140]. Quasi static approach based on the Hertz’ contact 

model was developed in [42, 54]. An effective approach based on the visco-elastic 

contact elements inserted between the colliding bodies is discussed in [26, 42, 51, 

52]. An overview of different theories and discussion of their applicability can be 

found in [26, 52]. Here we discuss shortly the classical stereo-mechanical ap-

proach. 

1.4.1 Impulsive Motion of the Point Mass 

The usual assumption of the axiomatic impact theory is that the duration of a colli-

sion is short and thus the change of the positions during this time interval is negli-

gible. The change of the velocities of the colliding bodies is on the contrary large 

(comparable with the velocities just before the collision). It is possible if the con-

tact forces acting during the collision are very large. Infinite forces are necessary 

for the finite change of the velocity during an infinitesimally small time interval. It 

is useful to replace the contact forces by their integral characteristic, which is 

called “impulse”:

t

t

I F t dt (1.73)

Here t  corresponds to the beginning of the collision and t  corresponds to its 

end, vector F  is the contact force and vector I  is its impulse. 
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Consider a point mass m  subjected to a “normal” force Q t  alongside with 

the contact force F . Change in position r  and velocity v  of the mass during im-

pact can be calculated as follows: 

t

t

t

t

mv t mv t I Q t dt

r t r t v t dt

(1.74)

The integral terms can be neglected for the infinitesimally short collisions. 

Thus we obtain the relationship for the velocity change during the collision: 

;

m v m v v I

v v t v v t
(1.75)

1.4.2 Impulsive Motion of a System of Point Masses 

These relationships can be easily generalized for a system of point masses 
, 1, 2, ,im i n  subjected to external forces iQ  and interaction forces ijR

alongside the impulsive contact forces iF . The interaction forces satisfy the New-

ton’s law (action is equal to reaction):  

; 0ij ji iiR R R (1.76)

Equations of motion for this system are: 

1 , 1, 2, ,

n

i i i i ij

j

i i i

m v Q F R
i n

m r v

(1.77)

Integrating these equations during a collision and neglecting the finite terms, 

we obtain the equations governing the change of the velocities due to the collision: 
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1

, 1, 2, ,

; ; 0

n
h

i i i i j

j

t

h h h h h

i j i j i j j i i i

t

m v I I i n

I R t dt I I I

(1.78)

The terms 
h

i jI  are the impulses of the reaction forces. It is sensible to distin-

guish between the hard couplings (due to kinematical constraints) and soft cou-

plings (like springs or dampers). The impulses in the soft couplings are equal to 

zero, the impulses in the hard couplings are finite. We will use an index h  for 

these couplings. 

All the classical theorems of dynamics can be reformulated for the impulsive 

motion. We can introduce the mass of the whole system, position of the gravity 

center and its velocity as follows: 

1 1 1

1 1
; ;

n n n

i G i i G i i

i i i

M m r m r v m v
M M

(1.79)

The changes of these values due to the collision are: 

1 1 1

, 0
n n n

h

G i i j

i i j

M v I I (1.80)

 Similarly we can calculate the impulsive change of the kinetic torque with re-

spect to any fixed point: 

1

1 1

n

O i i O i

i

n n

O i i O i i O i

i i

K m r r v

K m r r v r r I

(1.81)

Here we use the assumption that 

0h

i j i jr r I (1.82)

It means that the interaction between two point masses is collinear to the line 

connecting them (this is an independent axiom in mechanics). 

Finally we can calculate the impulsive change of the kinetic energy.  
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2 2

1 1

1 1 1

1 1

2 2

1 1

2 2

n n

i i i i i i i i

i i

n n n
h

i i i i j i i

i i j

T m v v m v v v v

I v v I v v

(1.83)

Here we have used the relationship (1.78). The hard couplings link two point 

masses rigidly. It means the distance between these masses does not change dur-

ing the collision. Hence 

0i j i jr r v v (1.84)

Index  here means that it doesn’t matter if we take the velocities before or af-

ter the collision. But according to (1.82) the internal impulses of the hard cou-

plings are collinear with the vector i jr r . Hence we obtain the relationships: 

0; 0h h

i j i j i j i jI v v I v v (1.85)

Applying these relationships to the last term in (1.83) and taking the skew 

symmetry of the matrix 
h

i jI  into account (cf. (1.78)) we can see that this term 

vanishes. So we finally obtain the Kelvin’s formula [4] for the change of the ki-

netic energy due to the collision: 

1

1

2

n

i i i

i

T I v v (1.86)

1.4.3 Impulsive Motion of a Rigid Body 

The obtained results can be easily generalized in order to describe the impulsive 

motion of a rigid body. Let us introduce two frames (see Fig. 1.12). 

The frame ' ' ' 'O x y z  doesn’t move. The frame O x y z  is connected with 
the rigid body V , which does not move relative to it. Velocity of an arbitrary 
point A  is 

A O Av v r (1.87)

Here Ov  is the velocity of the pole O ,  is the angular velocity of the body. 

It is sensible to place the origin O  into the gravity center of the body. Then ac-

cording to (1.80)  
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1

n

G i

i

M v I (1.88)

Here M  is the mass of the body, iI  are the impulses of the contact forces, 

which are applied in points iA .

x'

y'

z'

O'
x

y

z

O

V

A

Or

Ar

x'

y'

z'

O'

x'

y'

z'

x'

y'

z'

O'
x

y

z

O

x
y

z

O

V

A

V

A

Or

Ar

Fig. 1.12. Two frames for description of an arbitrary motion of a solid body 

The kinetic torque of the solid body can be calculated as the integral over the 

volume of the body 

G

V

K r r r dV
(1.89)

Here r  is the density,  is the inertial tensor of the body. Then the rela-

tionship (1.81) takes the following form: 

1

n

i O i

i

r r I (1.90)

Applying (1.88) and (1.90) to the equation (1.87) we can calculate the velocity 

of the arbitrary point A :
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1

1 1

1 n n

A G A i i O i

i i

v v r I r r I
M

(1.91)

Here 
1

 is the inverted tensor of inertia. 

All these relationships enable us to calculate the jumps in the velocities if the 

contact forces or their impulses are known. Unfortunately it is not the case in col-

lision problems. Thus some additional hypotheses are necessary. 

1.4.4 Collinear Collision of Two Point Masses 

 Consider the simplest possible collision of two point masses moving along a 

certain straight line (Fig. 1.13). 

1v
2v1v
2v

Fig. 1.13. Collision of two point masses 

Assume we know their velocities just before the collision: 1v  and 2v . Our ob-

jective is to determine the velocities of both masses after the collision. The equa-

tions of the impulsive motion for this simple case are: 

1 1 1

2 2 2

t

t

m v t v I t

m v t v I t

I t F d

(1.92)

The collision is possible if the masses approach each other before the collision 

(at the time t ) and separate from each other after the collision (at the time t ):

1 2 1 2;v v v v (1.93)

Between these time points there is an instant 0t  at which the relative velocity 

of the masses is equal to zero, i.e. 1 0 2 0v t v t . This time separates two 

phases of the collision. Compression in the contact zone increases during the first 

phase. At the time 0t  it is maximal. After that the relaxation phase begins. It ends 

as soon as the contact force becomes equal to zero. The impulse at the end of the 

compression phase is 
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1 2
0 1 2

1 2

0
m m

I t v v
m m

(1.94)

During the collision the impulse can only increase, thus 

1 2
1 2

1 2

m m
I t v v

m m
(1.95)

The fundamental hypothesis for the description of collisions was formu-

lated by Newton, who has suggested that the relationship between the im-

pulses depends on the material and shape of the colliding bodies but does 

not depend on their velocities before the collision.  

He has introduced the impulse restitution coefficient R , which is still the basic 

characteristic of the collision. 

01 , 0 1I t R I t R (1.96)

Taking (1.94) into account we can calculate the final impulse: 

1 2
1 2

1 2

1
m m

I t R v v
m m

(1.97)

The velocities after the end of the collision according to (1.92) are: 

2
1 1 1 1 2

1 1 2

1
2 2 2 1 2

2 1 2

1
1

1
1

m
v v I t v R v v

m m m

m
v v I t v R v v

m m m

(1.98)

Let us demonstrate that the coefficient R  characterizes the energy losses dur-

ing the collision. The change in the kinetic energy can be calculated according to 

the equation (1.86): 

1 1 2 2

2
2 1 2

1 2

1 2

1

2

1
1

2

T v v I t v v I t

m m
R v v

m m

(1.99)

The case 1R  means that there are no energy losses during the collision. 

Such a collision is called absolutely elastic. If 0R , the velocities of the collid-
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ing bodies are equal after the collision. Such a collision is called absolutely inelas-

tic or plastic. 

Experiments show that the Newton’s hypothesis correctly describes collisions 

in some intermediate range of the initial velocities (cf. [42]). The restitution coef-

ficient is very close to one for glass balls ( 0.94R ). It is almost equal to zero 

for heavy machines with a layer of bulk material between the colliding bodies. 

1.4.5 Direct Collisions in Mechanical Systems with Ideal Constraints 

The described approach can be easily generalized for a simple direct collision 

in a mechanical system with ideal, holonomic and steady constraints. A collision 

is called direct if the relative velocity of the colliding bodies is perpendicular to 
the contact surface [77]. Let us choose the coordinate q  describing the distance 

between the contact surfaces as one of the generalized coordinates. The other co-
ordinates are , 1, 2, ,iq i n . The total kinetic energy of the system with 

1n  degrees of freedom is a quadratic form of the generalized velocities: 

2

1 1 11 12 1

2 2 21 22 2

1 2

1 1

2 2

, ,

T T

n

n

n n n n nn

T q mq

q m m m m

q m m m m

q m m m m

q Mq m q

q m M

(1.100)

Equations of motion for this system are: 

1 2

1 2

1 2

,

,

,

,

T

T

n

T

T

n

n

T T
q

T T
p Q F p mq

q q

p p p

T T T T
Q Q Q

q q q

p Q p Mq m
q q

m q

p

Q
q

(1.101)

Here Q  is the generalized force corresponding to the contact coordinate, F  is 

the corresponding contact force, Q  is the vector of the generalized forces corre-
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sponding to other coordinates. The generalized forces do not contain reactions of 

the constraints and thus are finite during collision. 

Integrating these equations during the time interval of the collision we obtain: 

0;t p t p I tp p (1.102)

Taking (1.101) into account we obtain for the generalized velocities the follow-

ing linear equations: 

0

T

t q t q

t m q t q I t

M q q m

m q q
(1.103)

These equations can be easily solved with respect to the change of the general-

ized velocities: 

1

1

1

1

1

T

T

T

t q t q

m q t q I t

I t
q t q

m

I t
t

m

q q M m

m M m

m M m

q q M m
m M m

(1.104)

These relationships are valid for the whole time interval of the collision. At the 

end of the compression phase in particular, we obtain the following relationship: 

1

0 00 Tq t I t m qm M m (1.105)

Applying the Newton’s hypothesis (1.96) we can calculate the final impulse: 

1

01 1 TI t R I t R m qm M m (1.106)

Finally we find all the generalized velocities after the collision: 

11

q Rq

R qq q M m
(1.107)

This result completes the analysis of the collision of the mechanical system 

with ideal constraints. 
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1.4.6 Concluding Remarks 

Only the simplest cases of the direct collisions were considered in this para-

graph. Analysis in case of a general collision, i.e. if the relative velocity has a tan-

gential component to the contact surface, is much more complex. Especially im-

portant is to take the friction forces in the contact zone into account, because the 

friction forces are proportional to the normal contact force, i.e. they also have the 

impulsive character. A compact analysis of these problems from the axiomatic 

point of view can be found in [77].  

However a different approach is useful in applications and especially in nu-

merical simulations. It is based on the nonlinear contact elements taking energy 

dissipation and friction into account. These elements can be used almost univer-

sally in order to describe complex collisions with multiple contacts. However it is 

not easy to determine their parameters [52]. 
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Dry friction is one of the most complex phenomena in mechanics. Generalizing 

one can say that “dry” friction is the macroscopic appearance of the microscopic 

processes in a thin layer including the sliding surfaces and liquid or gas between 

them. The detailed modeling of these processes depends on the micro-conditions 

and may be extremely sophisticated. Some of the corresponding investigations and 

additional references can be found in [2, 43]. For example in many cases it seems 

to be necessary to take wear into account in order to explain some important fea-

tures of friction. 

Two basic effects of the dry friction are taken into account in all theories. The 

first of them is the discontinuity of dry friction which is connected with the differ-

ence between resistance to sliding whilst stationary (stick, static friction), and re-

sistance to sliding in motion (slip, dynamic friction). The ability of a friction con-

tact to resist against an applied external force without any macro motion displays 

the fact that friction can be interpreted as a constraint in such a situation.  

The contact resistance against slip is usually characterized through the friction 

coefficient. The friction coefficient is the relation between the magnitude of the 

friction force and the magnitude of the normal pressure force in contact. This coef-

ficient is however not constant. It depends at least on the relative velocity between 

the contacting surfaces and usually on the normal force (or normal pressure) itself.  

Many mechanical interfaces are characterized by a form of dry friction where 

the force-velocity curve has negative slope at low velocities. Initially, friction de-

creases as the contacting objects start to move, whereas at higher velocities the 

friction force increases again; in particular this characterizes surfaces with bound-

ary lubrication. The initial negative slope corresponds to negative damping and 

may thus cause oscillations that grow in amplitude, until a balance of dissipated 

and induced energy is attained, as pointed out already by Lord Rayleigh [108].

The characteristic change in friction coefficient with velocity has been ex-

plained quite convincingly by Tolstoi [127], who considers the normal separation 

distance between the friction surfaces as a key to the specific shape of the friction 

curve. However it is currently unclear to which extent the friction-velocity rela-

tionship, obtained experimentally during a quasi-static change of velocity, can be 

used to describe friction forces in dynamics, for example during the stationary os-

cillations [132]. 

A typical measured friction curve for low relative velocities is shown in Fig. 

2.1. It was measured for two steel bodies in oil. One can easily see the typical 

negative gradient of the friction coefficient at low relative velocities. The viscose 

properties of the lubricant become dominant at higher relative velocities and result 
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in increasing friction coefficient. (This situation is not shown in Fig. 2.1 but can 

be found in literature [2].) 
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Fig. 2.1. A typical measurement of the friction coefficient 

There are three main phenomena connected with the dry friction in oscillating 

systems: stick-slip oscillations due to negative friction gradient, instabilities due to 

the non-conservative character of friction and the friction induced displacement.

 The stick-slip vibrations are well known in many kinds of engineering systems 

and everyday life, e.g. as sounds form when a violin is played, squeaking chalks 

and shoes, creaking doors, squealing tramways, chattering machine tools, and 

grating brakes. Numerous works are devoted to the study of friction induced oscil-

lations. For ease of setup and interpretation an idealized physical system consist-

ing of a mass sliding on a moving belt has been considered very often. Panovko 

and Gubanova [85] show that self-excited oscillations occur in such a system only 

when the belt velocity is lower than the value corresponding to the minimum of 

the friction coefficient. Tondl [128], Nayfeh and Mook [80] and Mitropolskii and 

Nguyen [75] describe self-excited oscillations of the “mass-on-moving-belt”  sys-

tem, presenting approximate expressions for the vibration amplitudes for the case 

where there is no sticking between mass and belt. Popp [102] presents models 

with numerical and experimental results for four systems that are similar to the 

mass-on-moving-belt. Ibrahim [49, 50] and McMillan [70] present and discuss the 

basic mechanics of friction and friction models and provide reviews on relevant 

literature. A very readable historical review on dry friction and stick-slip phenom-

ena is given by Guran et al. [45] and a large survey on friction literature until 1992 

by Armstrong-Hélouvry et al. [5]. 

Much research seems to be concentrated on determining the onset of stick-slip 

vibrations in order to avoid these totally. However, stick-slip vibrations might be 

acceptable in applications, provided their amplitudes are sufficiently small. There-

fore, simple expressions providing an immediate insight into the influence of pa-



www.manaraa.com

2.1 Self Excited Oscillations of the Mass-on-Moving-Belt      37 

rameters on vibration amplitudes are useful. There are, however, very few works 

providing expressions for stationary stick-slip amplitudes. Armstrong-Hélouvry 

[6] performed a perturbation analysis for a system with Stribeck friction and fric-

tional lag, predicting the onset of stick-slip for a robot arm. Elmer [30] discusses 

stick-slip and pure slip oscillations of the mass-on-moving-belt system with no 

damping and different kinds of friction functions, provides analytical expressions 

for the transfer between stick-slip and pure-slip oscillations, and sketches typical 

local and global bifurcation scenarios. Thomsen [122] sets up approximate expres-

sions for stick-slip oscillations of the mass-on-moving-belt, which are accurate for 

very small differences in static and dynamic friction. In section 2.1 we generalize 

these results predicting the stationary amplitudes for larger differences in static 

and dynamic friction (cf. [125]). We also use this classical example in order to in-

troduce two different approaches for the analysis of discontinuous systems. The 

basic idea of the first one, which can be called “stitching”, is to split the consid-

ered motion into several time intervals. In each of these intervals the system’s be-

havior is continuous and all the discontinuities are replaced by the switching con-

ditions between different time intervals and subsystems. The second one is 

averaging; its applications in this chapter are limited to the pure slip motions.  

The standard publications are concentrated so strongly on the negative friction 

gradient as the source for friction induced instability that other mechanisms are 

seemingly almost forgotten. These mechanisms are possible in systems with two 

ore more degrees of freedom which become coupled due to the fact that dry fric-

tion substantially couples the normal and tangential contact forces. Several exam-

ples for these types of the friction induced instabilities can be found in [28, 105]. 

The applications include gear rattle, brake squeal and others. A simple example il-

lustration of this type of instability is discussed in section 2.2. 

The third phenomenon connected with dry friction is the vibration induced dis-

placement and transportation. Intensive research in this area was started in a 1964 

the book by Blekhmann and Dzhanelidze [15]. Many industrial applications for 

this phenomenon, like vibrating conveyers and screens followed this book (see for 

example [18]). A particular problem of the so-called “Chelomei’s pendulum” [27], 

combined two interesting effects – a pendulum under a high frequency excitation, 

and a vibration induced displacement. It attracted for a long period of time atten-

tion of different scientists [16, 20, 124]. 

The recent interest to such systems was inspired by the development of elec-

tronic devices combined with piezo-electric ceramics and ultrasonic motors as ex-

citation sources for the mechanical part of a system [130]. Several works from the 

Danish school should be mentioned here [53, 73, 118, 123, 124], where the Direct 

Separation of Motions (cf. [20]) was used for systems with friction. But in particu-

lar cases, where the first approximation is not sufficient, special methods were de-

veloped and successfully used by Fidlin and Thomsen [37, 40]. These examples 

are discussed in sections 2.3 and 2.4. 
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2.1 Self Excited Oscillations of the Mass-on-Moving-Belt

2.1.1 The Problem Description; Equations of Motion 

Fig. 2.2 shows the physical system we are going to investigate in this section. It is 

a mass M on a belt which moves at constant speed bV . The mass is a rigid body; 

its position at time t is X t  in a fixed frame of coordinates. It is subjected to a 

normal static pressure load F , linear spring-loading CX , damping force 

b dX dt  and a friction force rF V . The dynamic friction coefficient 

here is a function of the relative velocity, r bV dX dt V ; the static friction 

force is sF .

Vb

F

M

X

VVb

F

M

X

Fig. 2.2. The classical “mass-on-moving-belt” system 

The motion of the system is governed by the following equations (in non-

dimensional form): 

2 0 if   slipb bx x x x v x v (2.1)

0, 2  if    stickb s bx x v x v (2.2)

Here already we have to distinguish between two qualitatively different states 

of the system. When the mass slips relative to the moving belt its motion is gov-

erned by the equation (2.1). But if the conditions (2.2) are fulfilled, the mass can 

stick to the belt due to the static friction force. 

All parameters in the equations are positive and both variables and parameters 

are undimensioned according to the following relationships: 
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0 0

0

; ; ; ; ;
2

b
b

VF X C b
L x t t v

C L M L CM

dx
x

dt

(2.3)

Here lengths have been normalized by the characteristic length L  and time by 

the linear natural frequency 0  of free oscillations of the mass when there is no 

damping and friction. 

For the friction function rv  we assume, following to [49, 50, 85] (cf. Fig. 

2.3): 

3

1 3sgnr s r r rv v k v k v (2.4)

rv

rv

s

s

,m mv
rv

rv

s

s

,m mv

Fig. 2.3. Friction coefficient as a function of the relative velocity 

The following signs are used in the equation (2.4): 

1 3 3

3 1
;

2 2

r b

s m s m

m m

v x v

k k
v v

(2.5)

Here s  is the coefficient of static friction, mv is the velocity corresponding to 

the minimum coefficient m of dynamic friction, m s  , and 1 30, 0k k .

As it appears s when the mass is at rest on the moving belt ( 0rv , stick 

phase), whereas when the mass starts sliding the friction forces initially decrease 

with increasing velocity ( 0rv , slip phase). This particular form of the friction 

law is not overly restricted; it resembles characteristic features of friction models 

in common use. The so-called “Stribeck friction” , describing the friction-velocity 
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relationship for systems with boundary lubrication, also shares the essential fea-

tures of (2.4), even though they differ in detail. 

The problem to be solved below is to determine stable periodic solutions to 

(2.1), (2.2) with friction law (2.4). Closed form solutions are not available, due to 

the discontinuity and nonlinearity of the friction function . However, for the 
important case of relatively small difference between static and dynamic friction 

coefficients, we can employ perturbation analysis in order to set up approximate 

analytical expressions, and check the validity of results by using numerical simu-

lation.

2.1.2 Types of Motion 

According to (2.1) and (2.4) the mass has a static equilibrium at x x

3

1 3( )b s b bx v k v k v (2.6)

To study motions near this equilibrium we shift the origin by defining the new 

variable. 

( ) ( )u t x t x (2.7)

Equations  (2.1) and (2.2) are transformed by this substitution into 

( ) 0 (slip)u u h u (2.8)

3

1 30, 2 0 for (stick)b b b bu u k v k v v u v (2.9)

The following function is introduced here: 

2

1 3

2 3

3 3

( ) 2 ( ) ( )

1 sgn( ) (2 3 )

3

b b

s b b

b

h u u u v v

u v k k v u

k v u k u

(2.10)

Here 1 has been introduced as a formal book-keeping parameter, in order 

to indicate that the damping and the difference in static and kinetic friction coeffi-
cient are assumed small. The real assumptions are: the parameters 3k  and 

12 k  are small, the non-dimensional belt’s velocity has the magnitude order 1. 

For  example we can choose this  formal parameter as follows:

1 3max 2 ,k k .

The equilibrium 0; 0u u  in (2.8) corresponds to a steady state sliding, 

with the mass being at rest and the belt sliding at constant velocity bv  below it. 
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Expression (2.10) shows explicitly, that the negative friction gradient produces 

negative damping. It is the simplest source for instability in dynamic systems. 

Hence, this static equilibrium can be stable or unstable. If it is unstable, then stable 

periodic motion takes over; this is the only possibility, since generally the steady 

state must be a static equilibrium, a periodic motion, or a chaotic motion – and 

chaotic solutions cannot occur for a single second order autonomous ordinary dif-

ferential equation (e.g. [120]). 

Two different kinds of periodic solutions to (2.8), (2.9) are considered below: 

pure slip oscillations where the velocity of the mass is always smaller than the ve-

locity of the belt – and stick-slip oscillations where the velocities of the mass can 

be equal to (i.e. the mass occasionally sticks to the belt) or even exceed the veloc-

ity of the belt. The pure-slip oscillations are shown in Fig. 2.4 (velocity as the time 

series and the corresponding phase diagram). 
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Fig. 2.4. Pure slip oscillations of the mass-on-moving-belt 

The sick-slip oscillations are shown in Fig. 2.5. 
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Fig. 2.5. Stick-slip oscillations of the mass-on-moving-belt 

It seems that during stationary oscillations the velocity of the mass would never 

exceed that of the belt, i.e. 0  forbu t v t t . This is so because the energy 
storing spring cannot accelerate the mass to a velocity exceeding the maximum 

velocity during the previous oscillation period, and the energy-providing belt can-

not accelerate the mass to a velocity beyond its own. It is of course, possible to 
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start the system from a state with bu v , however, viscous damping and dry fric-

tion will then drain energy until a stationary state is achieved with bu v . This 
explanation is however not quite correct. The negative friction gradient means 

qualitatively nothing other than the negative damping which is active during the 

motion of the mass relative to the belt. Thus the energy of the mass can increase 

during slipping. So it can overtake the belt for a short period of time. But than, the 

direction of the relative velocity changes and the friction decelerates the mass until 

it sticks. The corresponding motion is illustrated in Fig. 2.6. 
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Fig. 2.6. Stick-slip oscillations of the mass overtaking the belt 

2.1.3 Pure Slip Oscillations 

With pure slip the inequality bu v  is valid for all t , so that the discontinuity 
of the friction function is never met or crossed. For this case the function h  in 

(2.10) can be written as follows: 

2 3

1 2 3

2

1 1 3 2 3 3 3

( ) for

2 3 ; 3 ;

b

b b

h u h u h u h u u v

h k k v h k v h k
(2.11)

In order to apply the standard averaging for solving (2.8) the standard Van-der-

Pol transformation based on the harmonic solution to the unperturbed problem can 

be used: 

sin ; cosu A u A (2.12)

The new variables A t  and t are governed by a system in standard form 
for averaging: 

.

.

.

.

.

.

.
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cos cos

1 cos sin

A h A

h A
A

(2.13)

Averaging this system with respect to the fast phase  we obtain an equation 
of the first order approximation: 

2

1 3

1 3

2 4
A A h h A (2.14)

There are two equilibrium points in this equation: A trivial solution 0A

corresponding to the static equilibrium 0u  and a nontrivial solution given by 

1
1

3

4

3

h
A

h
(2.15)

This stationary amplitude corresponds to periodic solutions 1 sinu A t
with an arbitrary phase  (the considered system is autonomous).  

As for the stability of solutions, one finds that the trivial solution is unstable if 

the friction gradient is negative; taking  (2.11) and (2.5) into account this condi-

tion becomes: 

1

4
1

3

m
b b m

s m

v
v v v (2.16)

As it appears, when there is no viscous damping ( 0 ) the static equilibrium 

is unstable for excitation speeds lower than mv . Viscous damping stabilizes the 

equilibrium, and at sufficiently large damping
3

( )
4

s m , the static equi-

librium is always stable. 

Periodic motions exist and are stable if 1 0h  and 3 0h . Since s m ,

the latter requirement is automatically fulfilled. The amplitude 1A  of the stable 

periodic motion can be found by inserting (2.11) and (2.5) into (2.15): 

2 2 2

1 1

0 1

4
2 1 2

3

m
m b m b b

s m

b b b

v
A v v v v v

v v v

(2.17)
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Here 1bv  is the speed below which pure slip oscillations first occur, as given by 

(2.16).

This expression for 1A assumes pure slip, so the increase in amplitude for de-

creasing bv  will cease when the mass starts sticking to the belt, i.e. when 

max bu v . With 1max u A  (by (2.12)), it is found that sticking first oc-

curs when 1 bA v . Inserting this into (2.17) and solving for bv we find that stick-

slip oscillations occur when 0b bv v , where 

0 1

4

5
b bv v (2.18)

Hence, the range of belt velocities where pure slip oscillations occur is rather 

small, its width 1 0b bv v  being only 1 4 5 10%  of 1bv . It forms a tran-

sition zone to a wider range of belt velocities where stick-slip motions occur. 

When sticking just starts, the amplitude of oscillations is given by inserting 

0b bv v in (2.17) and then using (2.16) and (2.18) to find: 

0
1 1,max 0

44
1

5 3b b

m
b mv v

s m

v
A A v v (2.19)

Hence, for vanishing damping  the maximum amplitude grows linearly with the 

velocity mv  of minimum kinetic friction. As it appears from (2.12), the non-

dimensional displacement amplitude equals the velocity amplitude; thus the veloc-

ity amplitude
1 1v

A A .

2.1.4 Stick-slip Oscillations 

Let us investigate what happens if the velocity of the belt is smaller that the 

critical value calculated according to (2.18), i.e. 0b bv v . We have shown that in 

that case the mass sticks to the belt during a part of an oscillation period.  

This case cannot be analyzed using the above averaging procedure for pure slip 

oscillations, since the switch from slip to stick is accompanied by the change of 

number of degrees of freedom in this system from one to zero. As long as the 

mass sticks to the belt its motion is determined kinematically and it does not have 

any degree of freedom. While slipping it has one degree of freedom and its motion 

is determined by the corresponding equation of dynamics.  
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The simplest way to solve this problem is to analyze the stick and the slip 

phases of the motion separately, and link the results together to obtain an ap-

proximate expression for one full oscillation period. Let us start with the slip 

phase. 

Slip phase 

During sticking the mass moves together with the belt, i.e. bu v . This contin-

ues until the force from the restoring spring and the damper has increased to the 

maximum static friction force, i.e. until the strict inequality in (2.2) or (2.9) is no 

longer satisfied. We consider this the initial condition at time 0t , where the 

stick phase ends and the slip phase begins, i.e.: 

3

1 3(0) 2 ; (0) ; (slip starts)b b b bu v k v k v u v (2.20)

Motions during the subsequent slip phase are then governed by (2.8). This 

equation is non-linear, so approximate methods are in need. However, during slip 

it is continuous in its highest derivatives, since the inequality bu v  holds during 

the slip phase. Further, since the solution is only needed for the finite time interval 

of the slip phase we can use a straightforward perturbation approach. We can try 

to find an approximate solution as follows: 

0 1 s1( ) ( ) ( ), [0; ], 1u t u t u t t t (2.21)

We substitute this relationship into (2.8) and (2.20), balance terms of the same 

powers of , insert (2.10), and obtain two new initial value problems determining 

the functions 0u  and 1u :

0 0 0 00; (0) 0; (0) bu u u u v (2.22)

3

1 1 0 1 * 1* 3* 1

31
* 1* 3*

( ); (0) 2 ; (0) 0

2
; ;

b b bu u h u u v k v k v u

kk
k k

(2.23)

The solution to (2.22) for the zero-order approximation 0u is:

0 sin( )bu v t (2.24)

Inserting this and (2.10) into (2.23), the equation for the first order correction 

1u can be obtained: 
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1 1 3 1 3 3

3 3 1
cos( ) cos(2 ) cos(3 )

2 2 4
u u c c t c t c t (2.25)

Here we have used the following signs: 

3

3 3* 1 * 1* 3

15
; 2

4
b b bc k v c v k v c (2.26)

The solution of this linear equation satisfying the initial conditions in (2.23) is: 

1 3 1 3 1 3

3

3 1 55 1
sin( ) cos( ) cos(2 )

2 2 32 2

1
cos(3 )

32

u c c t t c c t c t

c t

(2.27)

The secular term sint t is fully acceptable here, since it remains bounded in 

the finite time of slipping.  

Hence, the motion during the slip phase is approximately given by: 

3 1 3 1

2

3 3

1

3 1 55
sin sin cos

2 2 32

1 1
cos 2 cos3

2 32

0, (slip phase)

b

s

u t v t c c t t c c t

c t c t O

t t

(2.28)

Expression 
2O  denotes here small terms. The corresponding velocities u

and accelerations u  can be obtained simply by differentiation. 

It is still necessary to determine 1st , the time where slip stops and stick can 

start. This occurs after the mass has slipped back on the belt, and has been accel-

erated forward by the spring and the friction, until the velocity of the mass again 

equals the belt’s speed. Hence we determine 1st  as the first solution of the equa-

tion 1s bu t v  for 1 0st . Using (2.28) directly to computeu , a transcendental 

equation would have to be solved numerically to determine 1st . The most consis-

tent way to estimate its solution seems to be the asymptotic analysis used above. 

So the zero order approximation according to (2.24) is cosb s bv t v , with solu-

tion:

0

1 2st (2.29)
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The perturbed equation (2.28) should then determine the first order approxima-

tion for 1st . However, (2.29) is an extreme point of the cosine function, and so the 

accuracy of the first approximation will be ( )O . Hence, for the typical values 

of friction differences used in this study, i.e. 0.3s m , the error in 1st will

be about 55%. This problem especially concerns 1st , whereas vibration amplitudes 

are fairly well approximated (see below). If a better approximation for 1st  is 

needed, then one could consider the higher-level approximations for the solutions 

of (2.8). It should be recalled that numerical solutions for 1st  can always be ob-

tained simply by solving the algebraic equation 1s bu t v  numerically, with u
given by differentiation of (2.28): 

1 3 1

2

3 3

1

1 55
cos sin cos sin

2 32

3
sin 2 sin 3

32

0, (slip phase)

b

s

u t v t c t t t c c t

c t c t O

t t

(2.30)

The first order approximation to 1st  can be found as follows: 

1 1 3 2

1 1

1 21
1 1* * 3*

2

2 15
2 4 0

2

s s

s b

b

t O

c
k k v

v

(2.31)

Substituting this relationship into the sticking condition (2.9) we can transform 

this inequality to the following form: 

2

1 * 1* 3*2 0s bk k v (2.32)

If our formal small parameter  is sufficiently small, this condition is always 

fulfilled because . The corresponding motion was illustrated in Fig. 2.5.  

If, however, is sufficiently large, then this inequality is not fulfilled. This 

situation was illustrated in Fig. 2.6. In this book we remain in the frame of pertur-

bation analysis and assume the small parameter to be sufficiently small. 
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Stick Phase 

Stick starts at 1st t  and then the mass just follows the belt, i.e. 

; ; ;b s b s su v u t u t v t t t t T (2.33)

Here 1su t  is known by having applied (2.28) for the just completed phase of 

slip. The time t = T where stick ends is determined by the periodicity condition, 

i.e. 0u T u , so that 

1

1(0) ( )s
s

b

u u t
T t

v
(2.34)

Stick-Slip Vibration Amplitude 

Considering velocity amplitudes during one stick-slip cycle, we note that dur-
ing stick the velocity is constant, bu v while during slip the velocity changes 

continuously with a maximum absolute value at time mt t  defined by the solu-

tion to 0mu t . Seeking an approximate solution, we let 

0 1; 1m m mt t t (2.35)

Inserting this into (2.28) and Taylor-expanding for small one finds: 

2

0 0 1 0 0 1 0( ) ( ) ( ) ( ) ( )m m m m mu t u t t u t u t O (2.36)

Balancing terms of same orders of magnitude, it can be found that the condition 

0mu t  is approximately satisfied if 

0 0 1 0 1 0 0( ) 0; ( ) ( )m m m mu t u t t u t (2.37)

Considering (2.24) it can be noticed that the first equation is satisfied by 

0mt . Inserting this and relationships (2.24), (2.27) for 0 1,u u  into the second 

equation, one can determine the first order approximation (letting 1):

31 73

32
m

b b

cc
t

v v
(2.38)

The velocity at this time is: 
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1( )
2

m bu t v c (2.39)

As a measure indicating the magnitude of oscillations, which are asymmetric 
with respect to 0u , we can use the velocity amplitude 0vA of stick-slip oscil-

lations as half the peak-to-peak velocity, i.e. 

0

1
( )

2
v b mA v u t (2.40)

This velocity can be calculated as follows:

2

0 0

3 5
1 1 ,

2 8 4

b b
v b s m b b

m m

v v
A v v v

v v
(2.41)

The corresponding displacement amplitude 0A  can be determined similarly, by 

calculating approximations to the times mt and mt  where 0u ; (cf. Fig.2.7, 

which shows displacement, velocity, and acceleration during one cycle of stick-

slip oscillation). 

The corresponding approximation is 

1 3 3 1

1 3 3 1

3 1 52 3
; ( ) 2

2 2 32 4

1 52
; ( ) 2

2 2 32 4

m m b

m m b

t c c u t v c c

t c c u t v c c

(2.42)

Defining the displacement amplitude 1A  as half the peak-to-peak displacement, 

we become the following result: 

0 12

2

0

1
( ) ( )

2

3 5
1 1 ,

4 4

m m b

b b
b s m b b

m m

A u t u t v c

v v
v v v

v v

(2.43)

One can show that this function has a maximum value at
*

b bv v :
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(2.44)

Here 0bv  is given by (2.18). Thus, if the difference in static and dynamic fric-

tion is not too large, the strongest stick-slip oscillations occur when the excitation 

speed reaches the value separating stick-slip oscillations from pure-slip oscilla-

tions, 0b bv v . For larger friction differences the strongest oscillations occur at a 

smaller excitation speed, as given by the second expression in (2.44). 
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Fig. 2.7. Displacement, velocity, and acceleration during one cycle of stick-slip oscillation; 

definitions of displacement and velocity amplitudes 0A and 0vA , switch time st , and the 

times , ,m m mt t t of maximum absolute displacements and velocities 
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Since the analysis assumes friction differences that are small (but finite), then 

the first case applies, so that we conclude that the strongest oscillations occur 

at 0b bv v :

0
0 0,max 0 1,max

44
1

5 3b b

m
b mv v

s m

v
A A v v A (2.45)

The last equality expresses that the predicted amplitude 1A of pure-slip oscilla-

tions equals the predicted amplitude 0A of stick-slip oscillations at the value of 

excitation speed separating these different kinds of motion. This exact continuity 

is neither obvious, nor required, since the two expressions were derived using ap-

proximate methods. 

It can be noticed from (2.43) that at small values of the excitation speed, the 

stick-slip oscillation amplitude grows approximately linear with this speed: 

0

3
1 for 1

4

s m
b b

m

A v v
v

(2.46)

Finally, since the velocity of the mass must change continuously with time, the 

maximum and minimum displacements of the mass must occur during the slip 

phase; they cannot occur during sticking, because displacements here increase 

linearly with time until the slip starts. Hence, the amplitude 1A , determining dis-

placements during the slip phase, also determines the oscillation amplitude of the 

complete stick-slip oscillation. 

Stick-Slip Base Frequency 

Since at t T one cycle of slip and stick is completed, the base angular fre-

quency of stick-slip oscillations is 

22

(0) ( )

b
ss

b s s

v

T v t u u t
(2.47)

This frequency is generally somewhat lower than the linear natural frequency 

of the system and the frequency of pure slip oscillation. 
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2.1.5 Discussion of the Results 

The type of stationary motion for the “mass-on-moving-belt” with friction law 

(2.4) depends on the speed of the belt.  

Stick-slip oscillations with stationary amplitudes of displacement and velocity 

0A and 0vA , as given by (2.43) and (2.41), and base frequency ss  given by 

(2.47) occur  for small excitation speeds of the belt (at these speeds the negative 

friction gradient is large). This type of oscillations exists until the belt’s velocity 

reaches the critical value 0bv  (2.18), (2.16). The belt’s velocity corresponds to the 

maximal oscillations intensity, i.e. maximal displacement and velocity amplitudes. 

If the belt’s velocity exceeds this value (and the negative friction gradient de-

creases) stick-slip oscillations become impossible, because the mass doesn’t get 

enough energy in order to catch up with the belt. The pure slip oscillations with 

stationary displacement and velocity amplitude 1A  as given by (2.17), and base 

frequency 1ps  (equal to the linear natural frequency of the system) occur as 

long as the belt’s speed doesn’t exceed the second critical value 1bv  (2.16). For 

some parameters it may happen that 0 1b bv v , so that pure-slip oscillations can-

not occur at all. This take place according to (2.16) if viscous damping is suffi-

ciently large, or the friction forces or difference between static and kinetic friction 

is sufficiently small. 

If the belt’s velocity exceeds the second critical value 1b bv v , the static 

equilibrium at the position x t x becomes stable. This situation corresponds 
to a steady state sliding of the mass. 

Fig.2.8 shows the predicted variation of displacement amplitude with excitation 
speed for typical parameters. Here 0A indicates the amplitude during stick-slip os-

cillations for and 1A  is the amplitude for pure slip oscillations. As it appears, 
when the excitation speed is increased from zero, stick-slip oscillations occur with 

increasing amplitude until pure-slip oscillations take over. These prevail only in a 

narrow range of belt velocities above which, oscillations cease and steady slip be-

comes the stable type of motion. 

The simulations were performed for the following parameter values: 

 0.05; =0.5; =0.25; =0.4m m sv .

The correlation between the analytical predictions and numerical simulation 

(encircled points) is very good; closer correlation follows as the actual parameters 

values converge with the assumptions underlying the analytical expressions, i.e. as 

long as the difference in static and kinetic friction, the amount of viscous damp-

ing, and the amplitudes are not too large. It also appears that the predictions for 

the stick-slip amplitudes A0 are much better than the low-order approximation (in-

dicated in dashed line) given in [122]. 
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Fig. 2.8. Amplitude of stable periodic motions as a function of excitation speed bv ; the 
solid line corresponds to the analytical prediction; the dashed line corresponds to the ana-

lytical prediction from [122]; the dots correspond to numerical simulation results 

Fig.2.9 shows the predicted variation of base frequency with excitation 

speed, showing a slight drop in frequency for the lower velocities. Seemingly, the 

correlation with numerical simulation is quite good; however, since the change in 

frequency is so small, the relative error in the prediction is somewhat larger than 

for the displacement and amplitude predictions. This is a consequence of the diffi-

culty in predicting, with high accuracy, the end of the slip phase of a stick-slip cy-

cle, based on an approximate expression for the displacements during that cycle. 
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Fig. 2.9. Frequency of stable periodic motions as a function of excitation speed bv ; the 

solid line corresponds to the analytical prediction; the circles correspond to numerical simu-

lation results 

Fig. 2.10 illustrates how the quality of the analytical predictions changes as the 

assumptions underlying the analysis fails to hold true. The figure shows the varia-

tion of displacement amplitudes with excitation speed  just as Fig. 2.8, but for 

different levels of friction difference s m mv  and compare these to re-
sults of numerical simulation. 
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Solid lines correspond to the analytical prediction; dots (O, , ) show 

the numerical simulation results for the following values of the parameter 

0.075; 0.099; 0.15; 0.3; 0.6s m mv respectively. All the other 

parameters remain as before. 

It is evident from the figure that the quality of the correlation deteriorates as 

s m mv  increases from a value well within the assumed small size 

( circle symbols) to a value closer to unity ( diamond symbols). The lat-

ter quite high level of friction gradient is an example where the second equation in 

(2.44) applies, e.g. the amplitude has a maximum at an excitation speed lower than 

the critical value separating stick-slip and pure slip oscillations. Higher order ap-

proximations will be required in order to improve on the accuracy for such large 

levels of friction gradient. 
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Fig. 2.10. Comparison between analytic and numeric prediction for different friction gradi-

ents

The figure also illustrates how the magnitude of oscillation amplitudes and the 

range of oscillation-producing velocities increase with the level of friction gradi-

ent. For the smaller values of the negative friction gradient, the relation between 

stick-slip amplitudes and excitation speed is very close to being linear, as pre-

dicted by (2.46). 

2.1.6 Concluding Remarks 

The example also shows how elaborated it can be, to apply “stitching” even to 

the simplest nonlinear systems (what we have done in case of the stick-slip oscil-

lations). It is the only example of this approach in this book. In the next chapters 

we will use the “smoothing” methods like averaging and multiple scales in the 
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forms, which are modified in an appropriate manner, in order to make their use in 

discontinuous problems possible. 

In the next section however, we will turn away from discontinuous problems in 

order to discuss another instability mechanism, caused by dry friction. 

2.2 Friction Induced Flutter 

When talking about flutter, we mean dynamic instability in a system with two or 

more degrees of freedom, which is mathematically caused by asymmetry of the 

stiffness matrix. This asymmetry (meaning nothing else but an energy source) can 

have different physical origins (see [85] for detailed discussion). Several simple 

examples are given in this section in order to illustrate how this kind of instability 

can be caused by dry friction. Let us start with mathematical basics. 

2.2.1 Mathematical Basics of Flutter in a System with Two Degrees of 

Freedom

Consider the following linearized system: 

1 1

2 2

11 12

12 21

21 22

0

0 0 0
; ;

0 0 0

C , T

M x Bx Cx Ax

m b a
M B A

m b a

c c
c c C C

c c

(2.48)

Here M  is the matrix of inertia, B is the matrix of damping, C is the sym-

metric matrix of stiffness and A  is the skew symmetric matrix corresponding to 

the non-conservative forces (energy source).  

This system is obviously homogeneous and we are going to formulate the sta-

bility conditions for its trivial solution 0x . The corresponding characteristic 

equation is: 

2

1 1 11 12

2

21 2 2 22

2 2

1 1 11 2 2 22 12 21

det 0

0

m b c c a

c a m b c

m b c m b c c a c a

(2.49)

This is a fourth order algebraic equation with respect to the natural values :
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4 3 2

1 2 1 2 2 1 1 22 2 11 1 2

2 2

11 2 22 1 11 22 12 0

m m m b m b m c m c b b

c b c b c c a c
(2.50)

The Hurwitz’ conditions [25] must be fulfilled, if all the natural values must 

have negative real parts: 

2 2

12 11 22

1 22 2 11 1 2 11 2 22 12 2

12 11 22

1 2 2 1

2

1 2 11 2 22 1

2

1 2 2 1

a c c c

m c m c b b c b c b
a c c c

m b m b

m m c b c b

m b m b

(2.51)

If the first inequality isn’t fulfilled, the trivial solution increases exponentially 

without oscillations. If the second inequality isn’t fulfilled, the trivial solution os-

cillates with the exponentially increasing amplitude. This type of instability is 

usually associated with flutter.  

The inequalities (2.51) are sufficient conditions for the stability of the trivial so-

lution. Sometimes it is sensible to analyze the system without damping (because it 

is usually not easy to estimate the real damping). In that case, the natural values 

can be calculated explicitly: 

2
2 2

2 1 22 2 11 1 22 2 11 12 11 22

1 2 1 2 1 22 2

m c m c m c m c c c c a

m m m m m m
(2.52)

Sufficient conditions for instability can be formulated in this case only, because  

it is impossible to make conclusions concerning stability of a nonlinear system 

when only a linearized system has been analyzed.  

2 2

12 11 22

2

2 2 1 22 2 11
12

1 22

a c c c

m c m c
a c

m m

(2.53)

The system gets unstable if any of these inequalities is fulfilled. The types of 

instability are shown above. 

2.2.2 Wobbling of an Elastically Supported Friction Disc 

System shown in Fig. 2.11 is considered as the first example of the friction in-

duced instability. 
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Fig. 2.11. Elastically supported friction disc 

It consists of a homogeneous disc (radius R , thickness 2h , equatorial moment 

of inertia eJ , polar moment of inertia pJ ) which is fixed in its center of mass and 

can tilt in any direction. The disc doesn’t rotate around its symmetry axis (other-

wise we should take the gyroscopic terms into account, which would cause unnec-

essary complexities without any significant physical effect). 

The disc is supported by a friction ring with the same radius R . The ring ro-

tates together with the rigid base around the vertical axis. The connection between 

the ring and the base in vertical direction is elastic with the characteristic stiffness 
C. Inertia of the ring can be neglected in comparison with the inertia of the disc.  

It is sensible to introduce the space frame , ,x y z  and the disc frame 

, ,  in order to describe the motion of the disc (see Fig. 2.12 (a)).  

The wobbling of the disc can be described by two generalized coordinates 

,  (see Fig. 2.12 (b)). 
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Fig. 2.12. Generalized coordinates describing the wobbling of the disc 
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The relationship between these two coordinate systems is as follows: 

cos sin

sin sin cos sin cos

cos sin sin cos cos

x

y

z

(2.54)

This transformation can be linearized for small tilts: 

x x z

y y z

z x y z

(2.55)

Our objective now is to calculate the reaction between the disc and the friction 

ring. We assume that the reaction of each element of the elastic layer is collinear 

with the vertical axis z and depends on the vertical coordinate of the correspond-

ing point at the disc’ surface only: 

0 cos sinez eF F C R R (2.56)

Here  is the angle along the friction ring. In the disc’ frame we obtain: 

0

0

0 cos sin

e e

e e

e e

F F

F F

F F CR

(2.57)

The force component eF N acts in the normal direction to the disc’ surface 

and causes the friction force in each contact point (see Fig. 2.13). 

FRFR

Fig. 2.13. Friction force in contact between the disc and the ring 
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Assuming the permanent slip in contact one can easily calculate the elementary 

friction force: 

sin sin

cos cos

0

f f

f f

f

F F N

F F N

F

(2.58)

Here  is the friction coefficient (which we can assume constant in this sec-

tion). Adding the force components (2.57) and (2.58) we obtain the full reaction 

force in each contact element between the disc and the ring: 

0 0

0 0

0

sin cos sin

cos cos sin

cos sin

e e

e e e

e e

F F F CR

F F F CR

F F CR

(2.59)

The corresponding elementary torque is as follows: 

M F F

M F F

M r F

(2.60)

Substituting (2.59) into (2.60) and taking into account that at the contact line 

cos , sin ,R R h  one obtains the explicit expressions for the 

elementary torques: 

0

0 0

0 0

0

sin cos sin

cos cos sin

sin cos sin

cos cos sin

e

e e

e e

e

M R F CR

h F F CR

M h F F CR

R F CR

(2.61)

Integrating the elementary torques along the contact line one obtains the total 

torques responsible for the tilting of the disc: 
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0

0
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2

0

0

2

2

e

e

M M d R C F h hRC

M M d hRC R C F h

(2.62)

Finally we obtain the equations of motion governing the tilting of the disc: 

2

0

2

0

2 0

2 0

e e

e e

J b R C F h hRC

J b hRC R C F h
(2.63)

The terms b  and b  are introduced here in order to take the damping of the 

disc into account. Equations (2.63) have exactly the form that was discussed in 

section 2.2.1. Referring back to the form (2.48) we can notice that 

2

11 22 0

12 21

2

0

ec c R C F h

c c

a hRC

(2.64)

In other words the tilting of the disc with respect to both axes is coupled 

through the skew symmetric matrix caused by dry friction. This mechanism is il-

lustrated in Fig. 2.14 and can be physically explained as follows. 

Let us assume the disc tilts around the -axes. The springs on the left side of 

the Fig. 2.14 are more highly stressed than those on the right side as a conse-

quence. The corresponding reaction forces on the left side are larger. They cause 

the restitution torque, which is mathematically expressed through the terms at the 

main diagonal of the stiffness matrix. The relative motion between the disc and the 

friction layer causes friction forces tilting the disc around the -axes. 

The friction induced tilting torque acts in opposite direction on the left and on 

the right side of the disc. The resultant torque would be equal to zero, if the spring 

forces were uniform. In our situation however, they are non homogeneously dis-

tributed and the torque acting on the left side of the disc is larger than the torque 

acting on its right side. As a result a non compensated torque occurs. It tilts the 

disc around the -axes. This fact is mathematically expressed by the skew sym-

metric terms in the stiffness matrix. 

Now we could repeat the analysis assuming the disc is tilted around the new 

axis. The result would be the same. Tilting around any axis causes tilting around 

another axis, which is perpendicular to the first one. The disc starts wobbling. 
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Fig. 2.14. Tilting torque due to non homogeneous friction forces 

The stability conditions (2.51) take in our case the following simple form: 

2 2

11

2 2 11

a c

c
a b

J

(2.65)

The first inequality is always fulfilled. The second one can be transformed to 

the following explicit form: 

2

02 eR C F h
b

hRC J
(2.66)

This result shows that a tilting disc on the elastic friction layer without damping 

would be always unstable! This result is relevant for oscillations of friction 

clutches (“eek noise”) and layers. It can be easily generalized for a rotating disc. 

The gyroscopic terms should be taken into account in that case. The stability con-

dition, determining the maximal acceptable friction coefficient, depends then on 

the disc’s rotation speed. 

2.2.3 On the Unstable Behavior of an Asymmetrically Supported Disc 

(Brake Squeal) 

An elementary model of brake squeal is discussed in this section as the second ex-

ample. This model was suggested by Peter Hagedorn in a personal communica-

tion, who kindly allowed including this section into the book. 

Consider the system shown in Fig. 2.15. 
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Fig. 2.15. A rotating disc with an asymmetric elastic support 

It consists of a rigid rotating disc pressed between two friction pads. These pads 

are supported elastically with respect to both in axial displacement and tilting 

around the -axis. The axial springs are preloaded with the same force 0N . The 
forces acting on the disc are shown in Fig. 2.16. 
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Fig. 2.16. The forces and torques acting on the disc 

These forces can be calculated as follows: 
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1 0 2 0

3 0 4 0

12 1 2 0

34 3 4 0
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1 1 1 1
;
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1 1 1 1
;
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N N cr cl N N cr cl

N N cr cl N N cr cl

R N N N cr

R N N N cr

M C

M

(2.67)

Now we can calculate the total torques acting on the disc (we neglect the gyro-

scopic terms as before): 

1 2 3 4 12 34

2

0

12 1 2 3 4 12 34

4

T

M N N N N R R r

cr N r

M M N N N N l R R h

C crh

(2.68)

The corresponding linearized equations of motion are as follows: 

2

04 0

0T

J cr N r

J crh C
(2.69)

These equations have a well known structure. The two degrees of freedom are 

coupled non-symmetrically through the dry friction, which is the energy source 

amplifying the oscillations. Referring back to the general equations (2.48) one can 

find the following relations: 

2

11 22 12 21 0

0

; ; 4
2

4
2

T

r
c cr c C c c N ch

r
a N ch

(2.70)

The corresponding inequalities (each of them is sufficient for the instability) 

(2.53) are: 
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2

2

0

0

4 ;
4

T

T

C cr
N h C

Jr N ch
(2.71)

The first inequality is never fulfilled. The second one can be fulfilled if the fric-

tion coefficient is sufficiently large. Then the oscillating instability occurs. 

The mechanism described is strongly simplified. The realistic model of the 

brake squeal does not consider the motions of the friction disc as a rigid body. It 

must take (according to P. Hagedorn) the bending modes of the disc into account, 

but the logic described and the mechanism of instability remains the same. 

2.2.4 Conclusions 

The friction induced flutter is an important source of instability in systems with 

dry friction. Most of books and articles devoted to friction induced vibrations con-

centrate on the negative friction gradient as the main source of instability. Practi-

cal experience has convinced the author that the mechanism described in this sec-

tion is not less important, but unfortunately almost unknown by mechanical 

engineers. That’s why it is considered in this chapter even though the discussion 

here is limited to the elementary analysis of stability and the effects of nonlinear-

ity are not taken into account. 

2.3 Vibration Induced Displacement. Averaging in 
Discontinuous Systems 

Let us move on to the last group of problems connected with dry friction we are 

going to discuss in this chapter. We are going to discuss the so called “vibration 

induced displacement” or in other words the phenomenon transforming symmetric 

oscillations (excitation) into directed motion of the system. (Sometimes it is called 

“vibration induced transportation” or “vibration induced translation”.) This phe-

nomenon is used in numerous machines in chemical and civil engineering like vi-

brating conveyors, screens and other machines transporting bulk materials. Hun-

dreds different designs of these machines are used in practice. The phenomenon, 

however, is not only of practical, but mostly of general importance. It demon-

strates the ability of vibration to use the asymmetry of the system, in order to steer 

the input energy into some preferable direction. Besides that, it gives an excellent 

opportunity to demonstrate the peculiarities of discontinuous systems and intro-

duce the appropriate averaging procedure. Let us start with an elementary exam-

ple.
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2.3.1 A Simple Example of the Vibration Induced Displacement 

A simple example of a slipping system is discussed in this section, to show typical 

problems which can occur in the analysis of discontinuous systems. Consider a 

model of vibration induced displacement shown in Fig. 2.17. This system consists 

of a mass on a friction plate. Friction coefficients are taken to be different if the 

mass moves forwards or backwards. The mass is excited by a harmonically oscil-

lating horizontal force.

a cos t

Fig. 2.17. The basic example of the vibration induced displacement 

The equation of motion for the mass can be written as follows: 

cos friction

friction f b

mx a t F

F mgE x mgE x
(2.72)

Here x  is the coordinate of the mass on the plane, a is the excitation’ ampli-

tude, g is the gravity’ acceleration. Constants f  and b  are the friction coeffi-

cients forwards and backwards, which are assumed to be different. The one step

function E x  is determined as follows: 

1
2

1 if 0

if 0

0 if 0

x

E x x

x

(2.73)

The one step function and the asymmetric friction law (2.72) are illustrated in 

Fig. 2.18.  

The assumption about the asymmetry of the friction force is not as unusual as it 

may seem. The majority of the surfaces has some structure due to production 

process (like metal cutting) and is clearly anisotropic. 

Equation (2.72) does not contain x . So we are not interested in the position of 

the mass but only in its velocity. Introducing the average friction force and the 

asymmetry of friction we can rewrite (2.72) as follows: 
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cos sgn

; ;
2 2

sgn

f b f b

x v

v a t a v a

a g g
a

m a a

v E v E v

(2.74)

The introduced formal small parameter  indicates the assumption that the 

friction force is small. 
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Fig. 2.18. The one step function and the asymmetric friction law 

The basic idea for transformation of a perturbed system to a form suitable for 

averaging is to consider the unperturbed system. In out case it is: 

0 cosv a t (2.75)

Its solution 0 sinv a t const  can be considered as a transformation for the 

equation (2.74): 

sinv a t ua (2.76)

The new unknown function u  is governed by the following equation: 

sgn sinu u t (2.77)

It seems to be an equation in the standard form for averaging. Unfortunately 

this is not the case, even though the right hand side of this equation is proportional 

to the small parameter, limited and periodic. The problem is that the sgn -

function is discontinuous and it does not fulfill the Lipschitz-condition as a conse-

quence. However this system has an important peculiarity, which enables general-

ized averaging for these specific types of discontinuities. The argument of the dis-

continuous function is a sum of a slowly changing function (in our case it 
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is ,u u O ) and a fast periodic function (in our case it 

is sin , sin cos 1t t t O ).

2.3.2 Mathematical Basics for the First Order Averaging of the 

Constant Order Discontinuous Regimes 

The following theorem can be formulated and proved for the systems of this 

type.

Theorem 2.1 

Consider an initial value problem 

0, , 0x Z x t E g t f x x x (2.78)

Alongside (2.78) consider the corresponding averaged system: 

0, 0

,

x

Z t E g t f
(2.79)

Here E  is the one step function. 

Suppose: 

1.
1: n nZ R R is a bounded, Lipschitz-continuous in x , T -periodic in t

function for 0, 0, , 0,nx D R t ; (these requirements are 

usual for averaging). 

2.
1: n

ff R W R is a bounded differentiable function in x  on D .

(There is also nothing unusual in this requirement, except the fact that we have in-

troduced the set fW , which is the set, from which the function f  takes its val-

ues.) 

3.
1 1: gg R W R   is a continuously differentiable function of time. (The 

set gW  is introduced here.) 

The next two conditions are important: 

4. f gW W (The set fW  is a subset of gW )

5. Consider an equation  

fg t const W (2.80)
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We suppose that this equation for any constant value on the right hand side has 
a finite number of isolated solutions inside of any period of the func-

tion : 0,g t T :

0 , 1, 2, ,it t i m (2.81)

The requirement that these solutions have to be isolated, means that the first 

derivative of the function g  in these points is not equal to zero: 

0 0ig t G (2.82)

This condition is of the principal significance for this theorem. It is graphically 

illustrated in Fig. 2.19. Qualitatively it means that the time during which our sys-

tem remains in the vicinity of the discontinuity is short. It is the case if the func-

tion g  changes much faster that the function f . This requirement could be bro-

ken if the zero of the function f x g t corresponding to the discontinuity 

would meet a maximum or a minimum of the function g . This possibility is elimi-
nated by the fifth requirement (2.80) - (2.82). 

g t f x t

gW

fW

t0 T

g t f x t

gW

fW

t0 T

Fig. 2.19. Requirements to the function g t

6. All the constants do not depend on the small parameter. The solution to the 

averaged system (2.79) belongs to the interior subset of D  on the time scale 1 .

Under these conditions the solutions to (2.78) and (2.79) are asymptotically 

close to each other, i.e. 

2

1 1 2, 1 , 1c tx t t c e c O c O (2.83)
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In other words, under these conditions the system (2.78) can be averaged (with 
the first order accuracy) as if it were continuous. 

The proof of this theorem can be found in the Appendix IV.

This theorem validates averaging for the case that the system does not remain 

in the vicinity of the discontinuity. For systems with dry friction, it means pure 

slip motion is occurring. It is natural to call motions of this type the “constant or-

der discontinuous regimes”. This name underlines their difference from the “vari-
able order discontinuous regimes” like stick-slip oscillations in the systems with 

dry friction. 

Let us return back to our example of the vibration induced displacement and 

look how the described procedure works there. 

2.3.3 The Elementary Example of the Vibration Induced Displacement. 

The First Order Approximation 

The equation (2.77) satisfies all the conditions of the theorem 2.1 if we consider 

the case 1 1u . Then we can directly average its right hand side and obtain 

the equation of the first order approximation. Firstly we have to calculate the aver-

age:

2

0

1 2
sgn sin sgn sin arcsin

2
u t u t dt u (2.84)

The equation of the first order approximation is: 

1 1

2
arcsinu u (2.85)

Here index 1 denotes the averaged functions of the first order approximation. 

The stationary solution to (2.85) can be found by setting its right hand side to zero: 

1_ sin
2

stu (2.86)

The accuracy of this solution can be easily checked by numerical simulation. 

The comparison is shown in Fig. 2.20.  

The comparison was performed for the following values of the parameters: 

0.1; 0.05; 1a . The accuracy of the approximate solution seems 

to be quite acceptable.  
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t

1,u u

t

1,u u

Fig. 2.20. Comparison between numerical simulation and analytic prediction; the thick 

saw-like line corresponds to the results of numerical simulations, the smooth thin line cor-

responds to the solution of the averaged initial value problem (2.85) 

2.3.4 Discussion of the Results 

The result achieved is physically obvious. The oscillating mass on the surface 

with anisotropic friction moves on the average in the direction of the smaller fric-

tion.

The same practical effect can be achieved if we subject the mass on the surface 

with isotropic friction to elliptic excitation (which is the overlapping of synchro-

nous vertical and horizontal excitations). This example is discussed in the chapter 

6. Here we will give only the main results. 

Consider a system shown in Fig. 2.21. 

g
m

sina t

sina t

g
m

sina t

sina t

Fig. 2.21. A mass on the elliptically excited plane 

The equations governing the motion of the mass can be written as follows: 
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2

2

sin

sin

mx N x ma t

N mg ma t
(2.87)

These equations express the fact that the friction force is proportional to the 

normal reaction force. In our case, the normal force is influenced by the vertical 

acceleration of the plane. Thus the asymmetry of the excitation is the reason of the 

translation. It presses the mass towards the plane as it moves backwards and re-

duces the pressure in the phases, when the mass moves forwards. These influences 

result in a slow steady state translation overlapped by small fast vibrations (cf. 

Fig. 2.20). There are many machines based on the principle we have discussed 

above. First of all vibrating conveyors and sieves are used in the processing of 

bulk materials. 

Figure 2.22 shows how the average velocity of the translation depends on the 

phase difference between the vertical and the horizontal excitations.  The numeri-

cal simulations are compared with analytic prediction obtained in chapter 6. 
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Fig. 2.22. Transportation of the mass on the elliptically vibrating surface; the smooth line 

corresponds to the results of numerical simulation, the dots correspond to the analytic pre-

diction

2.3.5 Conclusions 

Averaging can be used directly, in order to analyze the constant order regimes in 

discontinuous systems with the accuracy of the first order approximation. This ap-

proach is very effective in slipping systems with dry friction and enables us to de-

scribe the useful mechanisms of the vibration induced displacement. In the next 

section we are going to discuss an advanced case, which requires analyzing the 

second order approximation. It will lead us to a more detailed insight into the pe-

culiarities of discontinuous systems. 
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2.4 Vibration Induced Displacement of a Resonant 
Friction Slider 

2.4.1 Problem Description 

Following [40], the problem of predicting steady drifting motions for a rigid slid-

ing body, sandwiched between two friction layers, as induced by an internal reso-

nator driven at high frequency is considered in this section. Fig.2.23 shows the 

system under consideration: A rigid slider with an imbedded oscillator. The oscil-

lator is driven near a high-frequency resonance. Two parallel surfaces of the slider 

are pre-loaded against friction layers having different frictional properties. This 

creates friction forces that depend asymmetrically on loads normal to the friction 

layers. With the internal resonator aligned neither normal nor parallel to the fric-

tion layers, the inertia forces of the resonator can cause the slider to move in one 

direction with a small overlay of high-frequency vibrations. Thus, a part of the en-

ergy supplied to small but fast oscillations of the resonator will be converted into 

large and comparably slow trenslation of the slider. 

P

M

m

c
b

L

W(t)

W0(t)

g

X

Fig. 2.23. The resonant friction slider 

The system shown in Fig. 2.23 consists of a slider, a pair of stators, and a reso-

nator. The slider is considered a rigid body of length L  and mass M . At time t
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its centre of mass G  is located a distance X t  from a fixed point in space. 

Rotational motion is prevented, so rotary inertia is ignored. A force P  acts 

against the slider, representing some external loading of the system. 

The stators provide a no-clearance guide way for the slider, fixed in space and 

tilted an angle  from horizontal in the gravity field g .

The resonator is considered a linear 1-dof oscillator, with a mass m at instanta-

neous positionW t , stiffness k , coefficient of viscous damping c , and mounted 

with a tilt  inside the slider. The resonator base is driven kinematically at small 

amplitude and high frequency, close to its natural frequency, i.e. close to reso-

nance. Thus 0 sinW t A t  is the externally controlled displacement of the 

resonator base, where A L  is the drive amplitude, and  is the near-resonant 

drive frequency:  

k m g L . Physically the resonator might be realized by a conven-

tional ultrasonic transducer clamped at one end inside the slider, and driven near 

resonance by piezo-electric ceramics (at amplitude about 1 m and frequency 

about 30 kHz). 

The contact between the slider and the stators is governed by dry friction with 

different friction coefficients 1  and 2  for the lower and upper contact surface, 

respectively. The friction force at surface i  is then sgni i iF N X , where 

0iN  is the compressive force normal to the surface. The slider is preloaded by 

a force 0N  between the stators, so that 1 2 0N N N  when the system is at 

rest and gravity does not contribute to the normal force ( 2 ). This pre-load

is assumed to be sufficiently large to maintain steady contact at both slider-stator 

interfaces during operation. 

2.4.2 Equations of Motion 

We can derive the equations of motion in the Lagrange’s form if we calculate the 

kinetic and potential energies, the Rayleigh’s dissipative function and the general-

ized forces as follows: 



www.manaraa.com

74      2. Oscillations in Systems with Dry Friction 

2
2

0 0

2

0

2

1 2

1 1
cos

2 2

1
sin sin

2

1
( ); 0;

2
X W

T M m X mX W W m W W

V M m gX mg W W kW

Q P F F Q D cW

(2.88)

Here 1 2,F F  are the friction forces described above. The Lagrange’s equations 

have the following form: 

= ; =X W

d L L D d L L D
Q Q

dt X X X dt W W W

L T V

(2.89)

Substituting (2.88) into (2.89) one obtains the equations governing the motion 

of the slider with the internal resonator: 

1 2 0

0

cos

sin

cos sin

M m X F F m W W

P M m g

mW cW kW mX mW mg

(2.90)

We need to compute the normal forces 1N  and 2N  at the friction layers, in or-

der to determine the friction forces 1 2F F . These will change in time because 

they are determined by the inertia forces transmitted from the vibrating internal 

resonator. If the two friction layers have identical normal stiffness, any increase 

N  in the compressive normal load exerted by the slider on one surface will be 

balanced by an equal decrease in the load on the other surface, until a clearance 

occurs as soon as one of the normal forces gets equal to zero.  

In this study we consider the case 0N N only, which means: The pre-load 

is sufficiently large to prevent clearance while the device is operating. For this 

case one obtains 

1 0 2 0

1 2 1 1 2 1

1 2 0 1 2

;

sgn

sgn sgn

N N N N N N

F F N N X

N X N X

(2.91)

N  can be obtained if we balance the forces normal to the stators: 
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0

1 1
sin cos

2 2
N m W W M m g (2.92)

The condition ensuring compressive slider loading at all times is 

0 max
t

N N t (2.93)

Let us assume that the external excitation is a harmonic one: 

0 sin( )W A t (2.94)

Firstly we are going to bring the problem to the non-dimensional form. We in-

troduce the following frequencies, non-dimensional variables and parameters: 

2

0 2

0

; ;

; sin

f

f

k g

m l

X W
x w

L L

(2.95)

2

2 0
0 2 2

0 0 0

0

2

; ;
2 1 cos

2 2
1 cos ; ; ;

;
1 cos

c m P
p

m M m M gkm

NA N
a n n

L mL mL

dt

d

(2.96)

Now we can rewrite the equations (2.91), (2.92) as follows: 

2

2

0

2 2

sin cos

sin 1 cos

sin 2 1 cos cos 0

f

x w a

p x n x n

w a w w x

(2.97)

The following signs are used here: 
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2

02

1 2

1 2

sin
sin cos ; max

1 cos

1
( ) sgn ;

2

1
( ) sgn ;

2

fw a
n n n

x x

x x

(2.98)

Note that  denotes the non-dimensional drive frequency and a  is the ampli-

tude of the internal resonator, which has natural frequency equal to unity and 

damping ratio . 0,1 denotes the relative mass of the resonator, w  the 

position of the resonator’ mass relative to its static equilibrium,  the average 

friction coefficient for the two friction layers, and  expresses the difference 

(asymmetry) in friction coefficients, 0n  is the pre-load of the slider, and p the 

external load. 

In the next section we illustrate, which types of the system’s behavior can be 

obtained by numerical simulation, and then consider obtaining approximate ana-

lytic solutions. 

2.4.3 Illustration to System’s Behavior 

Numerical solutions to (2.97) were obtained using the commercial software 

package ITI-SIM. (It is the case for almost all numeric simulations in this book).  

Fig. 2.24 shows three responses for the slider motion x , when the excitation 

amplitude is, respectively, 0.05a  (bottom curve), 0.02a  (middle), and 

0.005a  (top curve), and other parameters as given in the figure legend. The 

excitation is resonant for all curves, i.e. 0 ; 1 . Also, the level of sup-

plied input energy is the same, i.e. the product a is constant (this corresponds to 

choosing 
2

f a ), while the pre-load 0n  in each case has been chosen suffi-

ciently large to prevent slider-stator clearance. The results are displayed on a time 

scale a , which is proportional to physical time t .

As appears the slider climbs against gravity ( 10 ), moving at constant av-

erage velocity with a small overlay of rapid oscillations. The average velocity is of 

similar order of magnitude for all three cases, whereas the amplitude of the over-

laid oscillations decreases with the decreasing excitation’s amplitude (and corre-

spondingly increasing excitation frequency). For 0.005a  the high frequency 
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overlay is hardly noticeable, and the slider appears to move smoothly in one direc-

tion.

0

0 5

1

0 5 10

x t

t0

5

1

0 5 10

x t

t

Fig. 2.24. Slider position obtained for the following parameter values: p = 0, =

10
o
, = 45

o
, 1k = 0.25, 2k = 0.05, = 0.05, = 0.1

The physical phenomenon causing average translation of the slider is simple: 

When 2 (cf. Fig. 2.23.) and friction is not too large, inertia forces from the 

vibrating resonator cause the slider to oscillate back and forth between the stators. 

When in addition 0 , the inertia forces also create oscillating normal forces on 

the slider surfaces, and thus oscillating frictional forces parallel to the surfaces. If 

the surfaces differ in frictional properties 0 , then the frictional forces will 

also differ, and the slider moves farther in one direction than in the other one.  

Let us look how this phenomenon can be described analytically. 

2.4.4 Transformation to the Principal Form. Amplitude of the 

Resonator 

In this section we are going to split the system (2.97) into two parts. The first 

one will describe the oscillations of the resonator and the second one will govern 

the transportation of the slider. The first step is to solve (2.97) with respect to the 

highest derivatives. The result is: 

.
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2

02

2

2

0

2

2

sin cos
1

1 cos

sin cos cos
sin

sin cos
1

1 cos

2 cos sin

sin cos
1

1 cos

sin cos

sin cos
1

1 cos

f f

f f

w w
w

p n
a t

w w
x

p n

(2.99)

Next, we do assumptions about the magnitude orders of the parameters. Intro-

ducing a formal small parameter 1 we assume that 

2 2 2 3

0 0 0 0 0 0; ; ; ; ; f fa a (2.100)

Here all the parameters 0 0 0 0 0 0, , , , , fa  have the magnitude order of 

one. By this, we quantify the mass of the resonator, the friction, the amplitude of 

excitation, the damping, and the inverse natural frequency of the resonator in their 

magnitude orders. 

Keeping terms to 
3O  we can rewrite (2.99) as follows: 

2 2

0 0

2 3 2

0 0 0 0

2

0 0

3 2

0 0 0

2

2 sgn

sin ( sin ) sgn cos

cos sgn sin

( sin ) sgn

sin cos

1 cos

f

f

w w w x qw

a p x n

x w x w

p x n

q

(2.101)

Consider the unperturbed system to (2.101). More precise formulated we ne-

glect all the terms smaller than O :
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0 0

0 0 0

0

cos

w w

x w
(2.102)

Its general solution can be taken as a variable’s transformation for the complete 

system (2.101): 

2

0 0

sin , cos

cos cos

w u w u

x v u
(2.103)

The idea of this transformation is simple: The first equation in (2.101) is quasi-

linear; so the standard Van der Pol transformation introduces the amplitude u  of 

the resonator’s vibrations, having rate of change 
2O  (i.e. it becomes a slowly 

varying variable), and the phase which becomes a fast variable. Similarly, the 

transformation from x to v serves to eliminate the dominating first term on the 

right-hand side of the second equation in (2.101). Thus v expresses a small time 

varying correction to the first order solution to the unperturbed problem, i.e. the 

approximate solution obtained when neglecting terms of 
2O and higher. 

It is also important to notice that in this approximation the motion of the reso-
nator is independent from the motion of the slider. Thus the system is split into 

two weakly interacting subsystems. 

In the new variables the functions expressing friction become: 

0

0

sgn cos cos

sgn cos cos

x v u

x v u
(2.104)

We are going to investigate the resonant case, so we can assume 1  to 

be small, i.e. 
2

0 where 0 1O . Further we introduce a new variable 

t that expresses the phase difference between the excitation and the 

oscillations of the resonator. (This transformation is typical for almost linear reso-

nance problems [23].) Then the system (2.101) takes the following form (we keep 

the terms up to 
2O ):
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2 2 2

0 0

2

0 0

2
2 2 0

0 0

2

0
0

2
2 0

0

2

0
0

2 cos sin cos

sin cos sgn cos cos cos

2 sin cos sin sin

sin cos sgn cos cos sin

1 2 sin cos sin sin

sin

u u a

qu n v u

u

qu n v u
u

u

qu n
u

0

2

0

cos sgn cos cos sin

sin sin sgn cos cos

sin ( , , , )f

v u

v u n v u

p R u v

(2.105)

Here the function 
2R contains small terms having zero time average (these 

terms are unimportant for the following considerations). 

The system (2.105) is ready for asymptotic analysis. There are two slow vari-

ables: u and , expressing the amplitude of resonator oscillations and the phase 

difference between these oscillations and the excitation; they are slowly changing 

because u  and  are 
2O . There is also a fast rotating phase 

: 1O .

Variable v  is the most interesting one for the present study, because it de-

scribes the velocity of the slider. This variable differs in character from the other 

ones. Firstly, it is not a slow variable, since the first term in the equation for v  is 

not necessarily small. Secondly, this dominating term is discontinuous due to the 

“sign”-functions. Nevertheless, v  does not influence the motion of the resonator 

significantly, because it occurs only in the equations in the form of a small combi-

nation v . So we can find the resonator’s amplitude simply by averaging the first 

two equations of (2.105) with respect to the fast rotating phase .

In the averaging process we need the following mean values: 
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2

2 2

sgn cos sin cos 0; sgn cos sin 0

sgn cos sin cos 0; sgn cos cos 2 0

sgn cos sin 0; sgn cos cos 0

2
sgn cos cos

(2.106)

Hence, we obtain the averaged equations for the resonator, with subscript 1 de-

noting averaged variables: 

2
2 2 0 0

1 0 1 0 1 0

2 2 0
1 0 1

1

21
sin cos

2

cos
2

u u a n

a

u

(2.107)

If we are interested only in the stationary solutions of (2.107), we must put its 

right-hand sides to zero. Solving these equations, we obtain the stationary ampli-

tude of the resonator’s oscillations: 

0 0 0 0
1_ 2 2

0 0

2
2

0 0 0 0 0

2 2 2 2

0 0 0 0

2 cos

2 cos

4

St

n
u

a n
(2.108)

These equations describe the oscillations of the resonator to the first order, but 

they still do not give us any information about motions of the slider. 

Next we attempt to find an appropriate approximation for the slider’s velocity. 

2.4.5 Motion of the Slider: Preparing for Averaging 

The slider’s velocity v  is governed by the last equation in (2.105): 

0 0 0

2

0

sin sin sgn cos
cos

sinf

v
v u n

u

p R

(2.109)
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We consider (2.109) as the perturbed equation for an unperturbed equation ob-

tained by omitting terms of O  and smaller: 

0 0 0 0 sin sin sgn cosv n u (2.110)

This equation can be solved quite easily. Let us introduce two functions (cf.

Fig. 2.25): 

0

0

sgn cos arcsin sin

1 cos sin sgn cos

d

d

(2.111)

-2

0

2

2

1 cos

-2

0

2

2

1 cos

Fig. 2.25. Functions  and 1 cos

Using these functions we can find the solution to (2.110) in the following form: 

0 0 0 0

2
sin cosv n u (2.112)

This solution can be used as the basis for the transformation of the perturbed 

equation. We try to find the slider’s velocity as a sum of 0v  and a small correc-

tion:

0 pv v v (2.113)

Inserting (2.113) into (2.109), one finds that the new variable pv is governed by 

the following equation: 
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0 0 0

2

0

0 0 0

sin sin

sgn cos , , sgn(cos )

sin

2
sin cos

, ,
cos

p

p

f

p

p

v n u

u v

p O

n u v

u v
u

(2.114)

This equation is very interesting and worth discussing in detail. Its right hand 

side is not small. The first term is proportional to the difference between two sign-

functions. It is important that the arguments of these functions differ only slightly. 

Such a situation is illustrated in Fig. 2.26. 
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Fig. 2.26. Difference between two sign-functions 

The difference between these functions is almost always equal to zero. Only in 

two short time intervals it is equal to -2 (it can be also equal to 2, depending on the 

sign of the small arguments’ deviation). But in an integral sense, the effect of such 

a term is as small as the effect of any continuous small term of the same order of 

magnitude as the difference between the arguments of the sign-functions. Notice 

that the zero of cos  is a simple one (cf. the discussion of the Theorem 1). So it 

seems plausible that the equation (2.114) can be averaged with the similar accu-

racy as an equation in which the right hand side is multiplied by the small parame-

ter. This idea can be formulated as a theorem. 
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Theorem 2.2 

Consider the initial value problem: 

0

, , ,

0

x X x t Z x t E g t f x t E g t

x x
(2.115)

Here the functions 
1 1 1 1 1, : ; : ; :n n nX Z R R f R R g R R are de-

fined for 0 0, , , 0, , 0,nx x D R t . E t is a one-step func-

tion.
Consider the averaged problem alongside (2.115): 

00

,

, ,

x

X t

Z t E g t f t E g t

(2.116)

Suppose  

1. ,X Z and f  are measurable functions of t  for constant x  and 

f in addition is a piecewise differentiable function with respect to t , and 

its derivative is bounded 

3. All the functions are T -periodic with respect to t . means the time av-
erage.

4. ,X Z and f are bounded Lipschitz-continuous functions in x on D .

5.
1g t C , i.e. it is a differentiable function. 

6. An equation 0g t  has m simple solutions 0 , 1, ,it i m  for

0,t T .

7. The first derivative of the function g in these points is not equal to zero: 

0 0ig t G (2.117)

8. All constants do not depend on and belongs to the interior subset of  

D  on the time scale 1 .
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Then the solutions of (2.115) and (2.116) are asymptotically close to each 
other, i.e. the error one makes on using the averaged system instead of the origi-

nal one is small for the asymptotically long time interval: 

4

3( ) ( ) c tx t t c e (2.118)

The proof of this theorem can be found in Appendix III. 

Let us apply this theorem to the equation (2.114) describing the motion of the 

slider. The only thing we have to do is simply average (2.114). As a result we ob-

tain the following approximate equation for the slider, with 1v denoting averaged 

values:

00
1 1 0 02

1 0

2 4
1 tan sin

cos

fn
v v n p

u
(2.119)

The stationary value of the slider’s average velocity can be found by letting the 

right-hand side of (2.119) to zero, giving the stationary value for 1v – and then in-

serting (2.103) in order to obtain the corresponding value for the slider’s velocity 

x . The result is as follows: 

0 1_ 0

0 02

0 0

cos 4
1 tan sin

2

St f

St

u
v n p

n
(2.120)

Here 1_ Stu is the stationary value for the resonator’s amplitude given in (2.108). 

We have now obtained a simple expression for the average (non-sticking) mo-

tions of the slider. In the next section we compare this prediction to numerical re-

sults and discuss the influence of a system’s parameters. 

2.4.6 Performance in Dependence of Parameters; Comparison 

between Analytic Prediction and Numerical Simulations 

Fig. 2.27. (a) – (f) shows the variation of the average slider velocity Stv with
some essential system parameters. The curves are based on the approximate ex-

pression (2.120) with default values of the non-dimensional parameters as given in 

the figure legend; for each curve these values were taken, while one of the pa-

rameters was varied. Circle markers show results obtained by numerical integra-

tion of the full equations of motion (2.97). The results between the approximate 

and numerical methods agree very well. This justifies the rather complicated but 

correct way to obtain the averaged solution in comparison with a simpler but not 

so accurate approach represented in [122].  
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Fig. 2.27(a) shows a maximum for the averaged slider’s velocity, when the exci-

tation frequency  is close to the natural frequency of the internal resonator. 

This curve reflects the resonant character of the investigated phenomenon. 

(c)
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Fig. 2.27. Variation of the average slider’s velocity Stv with parameters; straight line corre-

sponds to analytic  prediction, circles show the results of the numerical simulations; default 

parameters  values: 0 0 0 0 0 00.1, 1, 1, 0.25, 1, 0.5, 2f a ;

00, 0, 0.5, 0.5p n

Fig.2.27(b) displays the effect of the average friction coefficient. It was varied 

across a wide range in order to show the main tendency: The average velocity of 

the slider decreases almost linearly with increased average friction. 

Fig.2.27(c) shows an even stronger influence of the asymmetry in friction, i.e. 

the difference between friction coefficients of the two friction layers surrounding 
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the slider. This asymmetry is the essential source of the whole effect causing the 

slider to move, so if 0  the slider’s velocity vanishes.  

Fig.2.27(d) shows the ability of the slider to climb against gravity. For the ac-

tual parameters, it appears, this is possible for stator inclinations up to about 11
( 0.2 rad), at which the vibration induced forces just balance gravity and the 

slider reverses its (average) direction of motion from upwards to downwards. 

Fig.2.27(e) displays the influence of the resonator mass ratio , which is not 

trivial. The curve has a characteristic maximum, which can be explained qualita-

tively: Slider motions are caused by forces induced by the resonator. Therefore, it 

seems obvious that increasing the mass of the resonator will increase the velocity 

of the slider. However, an increase in resonator mass may also decrease the reso-

nators oscillation amplitude. At some level of  this effect overcomes the first 

one, and the slider’s velocity starts to decrease. 

Finally, Fig.2.27(f) depicts how Stv  is affected by the resonator inclination .

If 0  the asymmetry in friction has no effect on the excitation, so the slider 

has zero average velocity. With increasing  the asymmetry in friction comes 

into play, and Stv  increases almost linearly up to about 75 ( 1.3 rad) in the fig-

ure. Beyond this value, the friction forces become large enough to cause periodical 

sticking of the slider, which lowers the average velocity as appears from the nu-

merical results (circles). The approximate approach used here does not take into 

account the possibility of sticking. Therefore, the approximate expression (2.120) 

consequently predicts erroneously large slider velocities as 90 ( 1.57
rad). Consideration of sticking motions might be included by applying the variable 

order averaging (cf. Chapter 4). 

2.4.7 Conclusions 

The example investigated is interesting both from practical and theoretical 

point of view.  

Firstly, it has allowed us to demonstrate how the higher order approximations 

can be obtained for the constant order regimes in discontinuous systems. It was 

demonstrated that averaging can be used not only in systems with small right hand 

sides, but it is also applicable for systems in which right hand sides are large but 

only during short time intervals. (Really important is, how small the correspond-

ing integral is.) 

Secondly, the investigated slider can be used as a moving transport device in 

many difficult situations like pipes or in medical applications. Its advantage is the 

simple excitation mechanism, the ability to climb against gravity and the ultra-

sonic frequency of oscillations with extremely small amplitude. Due to the last 

fact, the oscillations (which can be neither seen nor heard) do not disturb even in 

very delicate situations. 
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3. Systems with Almost Elastic Collisions 

Systems with collisions differ significantly from the considered systems with 

friction. First of all, systems with collisions cannot be described by ordinary dif-

ferential equations at all times. Ordinary differential equations are valid between 

the collisions, but some additional kinematic conditions must be used in order to 

calculate state variables after each collision, as functions of the state variables be-

fore the collision. It is typical that the coordinates of the colliding objects remain 

continuous in oscillating systems with collisions. The velocities on the contrary 

become discontinuous. The velocities change during a collision is usually not 

small – it has the same magnitude order as the velocities themselves. That is the 

main reason why general perturbation methods, like multiple scales or classical 

averaging developed for ordinary differential equations, cannot be applied directly 

to analyze systems with collisions.  

It should be distinguished between periodic, transient and chaotic motions in 

systems with collisions. The recent interest to chaotic motions in discontinuous 

and impact oscillators [3, 13, 32, 41, 46 – 48, 50, 57, 88 – 92, 100 – 104, 106, 107, 

115, 116, 134] is mainly motivated by the unwanted vibrations, like gear rattling 

[28, 57, 92, 93] or liquid sloshing [94]. For machines using vibrations like vibra-

tion crushers, screens or grinding machines the simplest periodic regimes are of 

the main interest.  

Different mathematical methods are used for analyzing these simplest regimes. 

The classical approach was developed for the piecewise linear systems. According 

to this approach the equations of motions have to be integrated between the colli-

sions, and the kinematic conditions describing collisions are used to stitch one in-

terval of the solution to another one. In simple cases without additional nonlineari-

ties this approach provides deep understanding for the variety of dynamic 

behavior in systems with collisions [1, 58]. It is also very effective in numerical 

simulations. However “stitching” becomes very elaborate for obtaining analytical 

predictions in presence of additional nonlinearities.  

Another method useful for numeric realization is mapping [44]. This method 

was also successfully used in order to investigate the existence and stability of pe-

riodic solutions. For example the completely nonlinear problem of self-

synchronization in systems with impacts was considered using this method [136].  

Further development of analytic methods was connected with the ideas of a 

small parameter and perturbations. Poincare`s method, historically the first 

method of small parameter, is very effective in order to analyze periodic solutions. 

It was generalized for the discontinuous systems of constant order by Kolovsky 

[59, 60] and for discontinuous systems of variable order by Nagaev [77]. These 



www.manaraa.com

90      3. Systems with Almost Elastic Collisions 

methods helped to analyze existence and stability of periodic solutions in slightly 

nonlinear systems with impacts, but the necessity to stabilize the technologically 

best impact regimes made the transient analysis inevitable. 

Very tempting was the idea to apply harmonic linearization for the transient 

analysis of impact oscillators [9, 10]. This approach is very easy but not validated. 

Thus its results are somehow unreliable. Numerous comparisons of the corre-

sponding approximate results for the simplest piecewise linear systems with exact 

and numeric solutions [10] shows that harmonic linearization is accurate enough 

for systems with strong filtering properties of elastic structures. The discrepancy 

increases with increasing energy dissipation and outside of the very small vicinity 

of resonance. Another point, especially noticeable in [9], is that the harmonic lin-

earization does not distinguish between different dynamical regimes, i.e. the vari-

ety of impact oscillations vanishes completely. 

One of the effective approaches, to apply averaging to systems with collisions 

is discussed in this chapter. The basic idea is to transform the corresponding equa-

tions of motion, including kinematic relationships describing collisions, to a form 

for which the modified averaging procedure can be established and validated. The 

main idea is to extrude the discontinuity from the equations applying a transforma-

tion containing the essential discontinuity. This idea was suggested in [137  139] 

and developed for different applications in [33, 52]. The original objective was to 

eliminate the discontinuity completely. Then it would be possible to apply stan-

dard averaging. This idea being quite successful for perfectly elastic collisions 

leads to artificial transformations with unclear physical sense even in case of a 

small energy dissipation during collisions. On the other hand it is not really neces-

sary to eliminate the discontinuities completely. It is enough to reduce them to a 

sufficiently small level relative to other damping sources and to generalize the av-

eraging technique for this case. This combination leads to an efficient approach 

for asymptotic analysis of colliding oscillators.

Two different types of oscillating systems with almost elastic collisions are 

considered in this chapter:  

systems limited at one side (a mass near a wall) 

systems limited at both sides (a mass in a clearance) 

The basic idea for the unfolding transformations in these two cases is discussed 

in paragraph 3.1. The classical “mass on moving belt” with one side limit is con-

sidered in paragraphs 3.2 and 3.3 as an example for the first and the second order 

averaging for a system with small discontinuity. The same system in a clearance is 

analyzed in paragraph 3.4. The classical resonantly excited impact oscillator lim-

ited at one side is considered in paragraph 3.5. The same system in a clearance is 

investigated in paragraph 3.6. Mathematical basics for the described averaging 

procedure are given in Appendix 5 which can be omitted by readers interested 

primarily in mechanical and technical applications but is strongly recommended to 

those interested in further development of the discussed methods. 

–



www.manaraa.com

3.1 The Basic Ideas of Discontinuous Averaging. Unfolding Transformations      91 

3.1 The Basic Ideas of Discontinuous Averaging. 
Unfolding Transformations 

It is not possible to apply standard averaging or other perturbation methods in 

order to obtain approximate solutions to systems with collisions, because these 

methods require the right hand sides of the equations of motion to be sufficiently 

smooth. The basic idea of the discontinuous system’s analysis is to find another 

kind of “standard form” to which discontinuous systems can be transformed and 

for which some kind of averaging can be validated. The most straightforward way 

to do this is to apply the discontinuous transformation technique.  

3.1.1 The Basic Idea of the Unfolding Transformation for the Mass 

Limited at One Side 

The main idea becomes quite clear if one looks at a typical solution for an elas-

tic impact oscillator without external forces (see Fig. 3.1). 

Fig. 3.1. An oscillator with an elastic limit at one side

Its motion is governed by equations: 

xxxxx

xxx

;0

0,0
(3.1)

The sense of these equations is quite simple. It describes a system containing of 

a mass and a spring. The motion of the mass is limited by an absolutely elastic 

wall placed in the equilibrium point. The mass colliding against the wall reflects 

without any loss of kinetic energy (the velocity magnitude remains constant and 

its direction changes). 

The general solution to this system is represented in Fig. 3.2. 

tAx sin (3.2)

This solution is nothing different than a folded sin-function (see Fig. 3.3). So 

the system (3.1) can be obviously regularized by a non-smooth transformation:  
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0x z z z (3.3)

This transformation automatically fulfils the elastic impact’s conditions and 

transforms (unfolds) the nonlinear system (3.1) to an elementary linear oscillator. 

The same idea for eliminating impacts by means of a non-smooth transformation 

already containing the essential discontinuity, was generalized in [52] for the case 

of almost elastic collisions ( 11 R ). But actually it is not necessary to elimi-

nate the impact discontinuity completely. If we are going to apply a generalized 

averaging method, it is absolutely sufficient to reduce the variable jumps to the 

same magnitude order as other small terms. 

t

x

Fig. 3.2. A typical solution to (3.1) is a folded sinus-function 

t

x
, 

z

Fig. 3.3. A solution to (3.1) in the folded and unfolded forms 

3.1.2 The Unfolding Transformation and Averaging in Case of Slightly 

Inelastic Collisions 

This idea can be illustrated by an elementary generalization to (3.1), taking 

both linear damping between the collisions and the imperfect velocity restitution 

in the collisions, into account. The system differs from (3.1) because the limiter is 

no longer located in the equilibrium point. Instead it is shifted slightly away from 

this position. The distance between the equilibrium position of the mass (without 

limiter) and the wall is . Consider the following system: 
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0,

; ; 0 1

x x x x

x x x x Rx R
(3.4)

The same unfolding transformation (3.3) can be applied here with an insignifi-

cant modification. 

, 0x z z z (3.5)

This transformation expresses the physical condition of the mass not penetrat-

ing the limiter.  

The inequality guarantees the unfolding character and the uniqueness of the 

transformation. This obvious inequality is assumed in all following transforma-

tions although it is not written down explicitly.  

It is easy to obtain the following equations for the unfolded variable: 

sgn , 0

0 ;

z z z z z

z z z z Rz
(3.6)

The main difference between equations (3.4) and (3.6) is that the change of the 

unknown function during each collision in (3.6) is small for almost elastic colli-

sions: 1 1R . This statement becomes obvious if we rewrite the kinematic 

relationships describing collision in (3.6) as follows: 

0 0; 1z z z z z R z (3.7)

Now the assumptions about the magnitude order of the parameters have to be 

taken. It is quite natural for perturbation methods to assume that the dissipative pa-

rameters and the shift between the equilibrium point of the spring and the limiter 

are small parameters of the same magnitude order. 

1; 1 1; 1R (3.8)

The unperturbed system corresponding to (3.6) is a linear harmonic oscillator 

under these assumptions. The standard Van-der-Pol transformation can be used in 

order to introduce slowly varying amplitude and a fast “rotating” phase. (Notice 

that the amplitude is assumed to be always positive.) 

2

sin ; cos

cos cos sgn sin ,

1 ,

1 sin cos sin

z A z A

A A n

A A R A n

A

(3.9)
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Taking A  as the new unknown function and  as the new independent vari-

able the following system can be obtained: 

2cos cos sgn sin
,

1 sin cos sin

1 ,

AdA
n

d

A

A A R A n

(3.10)

The unknown function A  here is slow (its derivative has the magnitude order 

of the small parameter) between collisions and its change while colliding is also 

small.  

An averaging procedure can be validated for systems in this form. The basic 

theorem for the first order averaging in this case was formulated in [139]. 

Theorem 3.1.

Consider a system 

nifxfxxx

nxX
d

dx
if,

(3.11)

Here
nRDx , x and x are the values of the phase variables before and 

after the passage of the independent variable  through the value n .

Suppose 

1. X  is a  measurable function of  for constant x  and 

2. Function X  is 2 -periodic with respect to .  means the average 

with respect to the fast rotating phase :

2

0

1

2
g g d (3.12)

3. X is a bounded Lipschitz-continuous function in x on D , i.e. 

2121 ),,(),,(

;),,(

xxxXxX

MxX

X

X
(3.13)
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4. f x is bounded and Lipschitz-continuous on D .

5. All constants do not depend on .

6. The solution of the averaged system belongs to the interior subset of D

on the  scale 1/

,, Xf
d

d
(3.14)

Under these conditions solutions of the initial value problems (3.11) and (3.14)

are asymptotically close to each other, i.e. 

/1,1 OforOx (3.15)

The proof of this theorem can be found in Appendix V. Here we are going to 

use it in order to obtain an approximate solution to our problem. If one is inter-

ested in the first order approximation only, the smaller terms can be neglected and 

the equations (3.10) rewritten as follows: 

2cos cos sgn sin ,

1 ,

dA
A n

d

A A R A n

(3.16)

Averaging this system according to (3.14) the following first order approxima-

tion can be easily obtained: 

1
1

1
.

2

dA R
A

d
(3.17)

Index one indicates the first order approximation. This is a quite simple linear 

equation. Its general solution is 

1

1
;

2

eff

eff

R
A Ce (3.18)

The arbitrary constant C is determined by the initial conditions. The same aver-

aging procedure can be applied to the system (3.9) directly. Then it is possible to 

obtain the first order approximations both for the amplitude and the phase. 

1 1 1

1

2
; 1 .effA A

A
(3.19)
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It is easy to write the approximate solution as follows if we return back to the 

original variables: 

1 2

1

2
sineff efft t

eff

x C e t e C
C

(3.20)

The constants 1C  and 2C  are determined through initial conditions.  

3.1.3 Comparison between Analytic and Numeric Predictions for the 

Oscillator Limited from One Side 

A comparison between the approximate solution and numeric simulation results 

for 0.2, 0, 0.9R is shown in Fig. 3.4. There is no visible differ-

ence between two predictions at least until the oscillations amplitude becomes 

small. The reason is that the averaging procedure used in this paragraph is valid 

until the amplitude is much larger than  Otherwise the terms with  cannot be 

considered as small and the system (3.9) or (3.10) is not in the standard form any 

more. 

If the amplitude becomes the same magnitude order as , two totally different 

effects can be expected depending on the sign of . If  is positive, there is no 

contact between the mass and the limiter in the equilibrium point. That’s why their 

collisions cannot take place as soon as the amplitude becomes smaller than .

Then the system’s behavior is no different to the linear damped oscillations (or not 

damped if no damping is assumed in the model, i.e. 0 ).  

The situation is totally different if  is negative. Then the process of repeated 

attenuated collisions starts, which damps the oscillations in a finite time through 

an infinite number of collisions.  

t

x

numeric simulation first order approximation

Fig. 3.4.  Comparison between the approximate prediction and numeric solution 
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It is not the objective of this paragraph to discuss the problem of repeated at-

tenuated collisions. It is only sensible to refer here to the book [77], which is de-

voted to this special problem.  

3.1.4 Unfolding Transformation and Averaging for the Free Mass in a 

Clearance  

The second example for an unfolding transformation can be obtained if we ana-

lyze a free mass in a clearance (see Fig. 3.5). 

2d

s

2d

s

Fig. 3.5. A mass in a clearance

This system can be analyzed under the same assumption the energy dissipation 

during collisions is small, i.e. the velocity restitution coefficient is close to one. 

Consider 1R  as the unperturbed system. The motion of the mass in the clear-

ance does not differ from a ray between two mirrors with ideal reflection (if we 

replace time through a space coordinate). In other words it is a straight line, which 

slope is determined through the initial velocity, folded into the clearance. The ba-

sic idea for the further analysis is to unfold this motion back to the straight line.  

In order to demonstrate how this idea works, let us consider this system with 

slightly inelastic collisions. Its motion is governed by equations (3.21). The folded 

straight line can be easily described by a standardized trigonometric based func-

tion (3.22). 

0 if

; if

s s d

s s s Rs s d
(3.21)

arcsin sinz z (3.22)

It is sensible to use this function as the unfolding transformation for the prob-

lem (3.21): 
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2d
s z (3.23)

The equations of motion in the unfolded variables describe a polygon with 

small angles between the straight line segments (see Fig. 3.6). 

Motion of a mass in a clear nce Unfolded motion of the mass

Fig. 3.6. A mass in a clearance: the folded and unfolded motion 

Applying transformation (3.23) to (3.21) one obtains the equations governing the

unfolded variables. 

0, if ; , if
2 2

z z n z Rz z n (3.24)

z as the new

 independent variable. 

z v (3.25)

0, ; 1 ,
2 2

dv
z n v v R v z n

dz
(3.26)

ship (3.25), to obtain the general solution in the time domain. 

1 2

1

1 2

1
ln

1

1

dv R
z C t Cv

Rdz

Cdz
vv

R C t Cdt

(3.27)

the original variables can be obtained.  

a

These equations can be transformed to the already known form (3.11) if we 

consider the velocity as the new unknown function and the coordinate

The corresponding averaged equation contains only one term describing the ve-

locity reduction due to collisions. It can be solved quite easily, which allows one 

not only to describe the system in the phase space, but referring back to relation-

Folding this motion back according to the transformation (3.23) the solution in 
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1 2

2
ln

1

d
s C t C

R
(3.28)

The free constants 1C and 2C are as usual determined through initial conditions.

and

numerical simulation results.  

approximation numerical solution

a)

approximation numerical solution

b)

Fig. 3.7. Comparison between asymptotic and numeric solutions; a) coordinates; b) veloci-

ties

tion.

Fi gure 3.7 displays a comparison between approximate prediction (3.28)  

No difference is visible between two predictions at the coordinate level. In con-

trast to this the difference on the velocity level is quite clear. This difference 

shows the main idea for the averaging of systems with slightly inelastic collisions. 

The vertical lines in Fig. 3.7 b) correspond to the collisions (the velocity changes 

its sign and its magnitude decreases slightly according to the restitution coeffi-

cient). The horizontal lines in the numeric solution occur during the time intervals 

of the free flight (in these time intervals the velocity does not change). In the ap-

proximate solution the situation is totally different. There is no change in the ve-

locity magnitude after each collision. It is the result of our transformation (3.23) 

based on the ideal reflection. This velocity change is distributed over the whole 

time interval between collisions and the averaged energy loss is correct. That’s 

why the velocity between the collisions is not constant in the approximate solu-

Summarizing this paragraph one can say that the described ideas help to split 

analysis into two steps. An unfolding transformation allows eliminating the main 

part of the discontinuity. It becomes especially effective if the unperturbed un-
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ties over the time interval between collisions. The result is a totally smooth system 

the classical “mass-on-moving-belt”.  

3.2. The “Mass-on-Moving-Belt” Limited at One Side: First 
Order Approximation 

The classical mass on moving belt with negative friction gradient is considered in 

this section. General properties of this system including both pure slip and stick-

slip oscillations were discussed in Chapter 2. The effect of almost elastic limit is 

going to be discussed now. It is easier to start with a one side limit. The system we 

are going to analyze is shown in Fig. 3.8.  

v
b
v
b

Fig. 3.8. A mass on a belt limited at one side. 

It consists of a mass connected to a linear damped spring and placed on a belt 
moving at constant speed bv . At one side the motion of the mass is restricted by a 

limiting element. (The motion is limited from the left side and not from the right 

side like in the previous section in order to demonstrate the appropriate transfor-

mation for this case.) The whole analysis is restricted to pure slip oscillations. The 

objective is to investigate the influence of the limit as isolated as possible from 

other effects. 

 The system is interesting from the technical point of view, because it is the 

standard and the simplest model for self excited oscillations. In many technical 

applications the oscillations are nothing dangerous. They become annoying if 

there is some noise connected with them. There are many different mechanisms by 

which a self excited mass can emit noise. But periodic collisions with a limiter are 

one of the strongest possible noise excitation mechanisms. As an example for 

technical applications hydraulic valves can be mentioned here. 

The equation of motion in undimensioned form can be written as follows.  

folded motion is close to something simple like linear oscillator in case of a mass 

and a spring near a limit or like constant free motion in case of a mass in a clear-

ance. The second step is averaging. It distributes the small remaining discontinui-

described by ordinary differential equations without discontinuities at all.  In the 

next paragraphs the effectiveness of this approach is illustrated for the analysis of 
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 if

;  if  

s s h s s

s s s Rs s
(3.29)

The function on the right hand side of (3.29) contains both terms describing the 

linear spring damping and the nonlinear dry friction with negative friction gradient 

for small relative velocities.  

2 3

1 2 3

2

1 1 3 2 3 3 3

3

1 3

2 3 ; 3 ;

sgn

b b

r s r r r

h s h s h s h s

h k k v h k v h k

v v k v k v

(3.30)

Parameters 1 2,h h and 3h are taken to be small. It is expressed in (3.29) through 

the formal small parameter . We suppose the collisions to be almost elastic, 

which means the restitution coefficient is close to one. We suppose also the limit-

ing wall is placed close to the position of the mass attached to the unstrained 

spring. 

1 ;R O O (3.31)

System (3.29) differs from the considered elementary example (3.4) through 

friction forces supplying energy to the oscillating mass between the collisions. 

The first step is to apply the unfolding transformation expressing the condition, 

mass cannot penetrate through the limit: 

s z (3.32)

For the unfolded variable the following equations can be easily obtained: 

2 3

1 2 3sgn sgn , if 0

1 , if 0

z z z h z h z z h z z

z z R z z
(3.33)

The second step is to introduce amplitude and phase: 

sin ; cosz A z A (3.34)

Equations (3.35) govern these new variables. The system can be transformed to 

the form (3.11) if we consider the phase as the new independent variable. Re-

stricting analysis to the first order approximation, i.e. neglecting all the terms of 

higher magnitude orders equation (3.36) can be obtained. 

This equation can be easily averaged. The result is an equation containing ex-

actly the same terms, which are already known for the system without limits.  
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2 2

2

2 2 2

1 3

2 2
2 22

1 3

cos cos sgn sin

cos cos ,

1 ,

cos
1 sin cos cos sin

A h A

h h A A n

A A R A n

h A
h h A

A

(3.35)

2 2

2

2 3 4

1 3

cos cos sgn sin

cos cos ,

1 ,

dA
h A

d

h A h A n

A A R A n

(3.36)

The only difference is the effective damping coefficient transformed similarly 

to (3.18). The corresponding discussion can be found in Chapter 2. The main re-

sults of the first order approximation are summarized below. 

3

1 1 1 3 1 1 1

1 3 2
; 1

2 8
eff effA h A h A h h R (3.37)

There are two equilibrium points in (3.37). The first one corresponds to the triv-

ial solution 1 0A , i.e. to the static equilibrium 0z t . The second one is the 

nontrivial solution: 

1

1

3

4

3

effh
A

h
(3.38)

It corresponds to periodic solutions 1 sinz A t with an arbitrary phase 

 (the considered system is autonomous). The trivial solution becomes unstable 

as soon as the expression under the square root in (3.38) becomes positive. It 

means, for the belt velocities lower than the limit (3.39) the equilibrium point be-

comes unstable and a stable limit cycle arises, the amplitude of which is given 

through (3.38).  

1

4
1

3

eff m

b m b

s m

v
v v v (3.39)



www.manaraa.com

3.3. Second Order Approximation in Systems with Almost Elastic Collisions      103 

This expression for 
1A  assumes pure slip, so the increase in amplitude for 

decreasing bv  will cease when the mass starts sticking to the belt, i.e. when 

max bs v . With 1max s A  it is found that sticking first occurs when 

1 bA v . Inserting this into (3.38) and solving for bv we find that stick occurs 

first when 0b bv v where 

4
0 15b bv v (3.40)

An interesting and unexpected result here is the fact, that the stationary ampli-

tude of the oscillator limited at one side does not depend on the parameter at

least according to the first order approximation. The influence of  on the oscil-

lation frequency can be easily found if we average the equation for  in (3.35). 

The result is 

2

1 1 2 1

1

2 1
1

3
h A

A
(3.41)

It means that the oscillation frequency depends linearly on the distance between 

the equilibrium point and the limiter. It is necessary to notice at this point that this 

is the frequency for the unfolded system. The main frequency for the original vari-

ables is certainly twice as much as 1 . It is also important to notice, that the fre-

quency depends on in the small terms only, so one could expect a similar de-

pendency for the amplitude. In order to investigate this question the second order 

approximation to (3.36) is necessary.  

3.3. Second Order Approximation in Systems with Almost 
Elastic Collisions 

3.3.1 General Mathematical Approach 

The second order approximation for a system in form (3.11) can be easily ob-

tained if we apply the general idea of almost identical transformations (cf. para-

graph 1.2.2 for details). Consider a system where the second order terms are taken 

into account explicitly: 
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2

1 2

2

1 2

, , ,

,

x X x t X x t t n

x x f x f x t n
(3.42)

The basic idea is to perform an almost identical variable transformation as fol-

lows:

tutux ,, 2

2

1
(3.43)

The aim is to obtain an autonomous equation for the new variable , which 

does not contain time: 

2

2

1
(3.44)

We apply (3.43) to (3.42), take (3.44) into account and balance the terms with 

the same powers of the small parameter: 

2 2 21 1 2
1 2 1

2 2 1
1 2 1

2 2

1 2 1 2

2 21
1 1 2

, , ,

,

u u u

t t

X
X t X t u t n

u u u u

f
f u f t n

(3.45)

For the unknown functions 1u  and 2u  we obtain the following equations: 

1
1 1

1 1 1

, ,

,

u
X t t n

t

u u f t n

(3.46)

2 1 1
2 1 2 1

1
2 2 1

,

,

u X u
X t u

t

f
u u u t n

(3.47)

Functions 1u  and 2u  have to remain limited with respect to time otherwise we 

could not balance the terms with different powers of the small parameter. In order 
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to fulfill this condition we must assure that the average change of the right hand 

sides of our systems vanish. This determines the functions 1  and 2 :

2

1 1 1

0

1 1
,

2
X t dt f (3.48)

2

1 1
2 2 1 1

0

1
1 1 2

1
,

2

1 1
0

2

X u
X t u dt

f
u u f

(3.49)

In order to calculate 2 we have to determine the function 1u . It can be done 

in different ways, because according to (3.46) this function depends on an arbi-

trary slow function C .

1 1 1

0

1 1 1

, ,

,

t

u X t dt C t n

u u f t n

(3.50)

The most useful way is to require that the average of the function 1u  between 

the discontinuities must be equal to zero.  

2

1 1

0 0

,

t

C X d dt (3.51)

If C  is chosen according to this relationship, then the last term under the inte-

gral (3.49) vanishes and we obtain finally: 

2 2 2

1 1
1 1 1 1

0 0 0

2

1 1
2 2 1 1 1 2

0

1 1 1
0

2 2 2

1 1 1
0

2 2

u u
dt dt u dt

X f
X u dt u u f

(3.52)

The accuracy of the system (3.44) can be proved as usual (cf. Appendix V). 

Taking further terms into account (which may be quite elaborated) one can get an 

approximation of any required order. 
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3.3.2 The Second Order Approximation for the Amplitude of the Mass 

on Moving Belt Limited from One Side 

The described approach can be used to obtain the second approximation for the 

“mass on moving belt” and investigate how the oscillations amplitude depends on 

. The first step is to rewrite (3.36) holding not only the first order but also the 

second order terms: 

2

1 2, , ,

,

A X A X A n

A A f A n
(3.53)

The following symbols are used here: 

2 2

1 2

2 3 4

1 3

, cos cos sgn sin

cos cos

X A h A

h A h A
(3.54)

2 2 21
2 2

3 31
1 3

, cos sin

cos cos sin

1

X
X A h A

A

X
h A h A

A

f A R A

(3.55)

The average of (3.54) is already known (cf. (3.37)). IN order to obtain the sec-

ond order approximation, the function 2  must be calculated according to (3.52): 

Function 2X can be averaged quite easily: 

2 2 4

2 1 3 1 2 2 3

4 4 4
,

3 5 7
X A h h h h A h h A (3.56)

However it is not sufficient in order to obtain the second order approximation. 

In addition to (3.56) it is necessary to take the small oscillating terms into account, 

which describe the difference between the solutions of the original equation and 

the first order approximation up to the magnitude orderO . For that purpose it 

is necessary to calculate the correcting function u :
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1
1 1

2

2

3

3 1

2

1 1 2

3

3

1
, ,

1
cos sgn sin cos3 3cos sgn sin

4

1 1 1 1
2cos 2 cos 4 cos 2

4 2 2

1 1 1
sin sin 2 sin 3 3sin

4 4 3

1 1 1
sin 2 sin 4  for 0

4 8

u
X A X A f A

h A

R
h A h A A

u C h A h A

R
h A A

(3.57)

The free constant C is determined through the requirement that the average of 

the correcting function must be equal to zero: 

2

2

1 1 2

0 0

2 14 1
,

9 2

t
R

C X d dt h A A (3.58)

Now the second term in (3.52) can be calculated: 

2 3 2 41
1 2 3

2 2 2 21 1
1 2 3 1 22

4

2 3

cos 2 cos sgn sin 3 cos

1 28 21 1

9 3 20 5

31

140

X
h h A h A

A

X hR
u h A h A h h A

A

h h A

(3.59)

Finally, all the terms together give us the equation of the second approximation: 

3 2

3 2 3 21 2
2 2 1 2

42
22 3 21 2 2

2 2 2

13 1
2

2 8 4

7 1 1 14
2

20 2 9

Rh A h Ah A R
A A h A

h h Ah h A R R
A h A

(3.60)

The stationary solution can be obtained asymptotically if we set the right hand 

side of this equation to zero. ( *
2A  is the stationary amplitude according to the sec-

ond approximation.) 
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1

2 1

2 1 2 2

1

; ;

A

A
A A A A

d

dA

(3.61)

Here according to (3.60) the following symbols are used: 

1

2
1

1 3 1

2 42

3 2 31 2
2 1

2

2

11 3

2 4

71
2

4 20

1 1 14
2

2 9

A

Rd
h h A

dA

h A h h Ah h AR
h A

R R
A h A

(3.62)

3.3.3 Discussion of the Results and Comparisons with Numeric 

Experiments

It is obvious that the stationary amplitude depends linearly from the distance 

between the (unstable) equilibrium and the limiter. This conclusion can be easily 

compared with numeric simulation results. Fig. 3.9 shows both predictions for the 

following parameter values: 1 2 30.05; 0.03; 0.01; 0.95h h h R .
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Fig. 3.9. Stationary amplitude as a function of the distance from the (unstable) equilibrium 

of the mass on moving belt to the limit: A comparison between numeric simulation and 

analytic prediction 
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The prediction gives quite accurate results for 0.2 0.2 , which is a 

rather wide range for a small parameter. 

Summarizing the results concerning the “mass on moving belt” limited at one 

side one could give the following qualitative explanation for the obtained results. 

The system’s motion in the considered case can be unfolded to an almost har-

monic oscillation (sinus-function). The effect of collisions, for the first order accu-

racy, can be reduced to an additional effective damping. The energy supplied to 

the mass from the belt due to the negative friction gradient results in the increasing 

oscillation amplitude until the nonlinear terms in the increasing friction at high ve-

locities compensate this effect. The system’s behaviour is similar to an oscillator 

without limiter. The nonlinear effect of collisions becomes visible first in the sec-

ond order approximation. It means the collisions alone are not able to limit the os-

cillations amplitude. They can only increase the minimal negative friction gradient 

necessary for the self-excitation. A system with much stronger nonlinear effect of 

the collisions is analyzed in the next paragraph. 

3.4. The “Mass on Moving Belt” in a clearance 

The same classical mass on the moving belt with negative friction gradient as in 

section 3.2 is considered in this paragraph. It is supposed that the mass is limited 

from both sides.  We are going to show that such a constraint changes all the dy-

namical properties of the system totally. The system we are going to analyze is 

shown in Fig. 3.10.  

v
b

2d

v
b

2d

Fig. 3.10. A mass on a belt in a clearance 

It consists of a mass connected to a linear damped spring and placed on a belt 

moving at a constant velocity bv . The motion of the mass is restricted from both 

sides by limiting elements. The whole analysis is restricted to pure slip oscilla-

tions. The objective is to investigate the influence of the clearance as isolated as 

possible from other effects.  

The system is interesting from the technical point of view, because clearances 

are very usual in applications. Generally small clearances are necessary for as-

sembling, otherwise it would be impossible to put parts together and assure that 
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they can move relative to each other while operating. Typical examples of such 

systems are: clearances between gears; motions, perpendicular to the flow, of hy-

draulic valves in pipes. In both cases self excitation mechanisms can occur. In 

gears the self excitation comes usually from the non-conservative friction forces 

(not necessarily due to negative friction gradient). In hydraulic valves the excita-

tion mechanism is a sort of flutter. In any case Fig. 3.10 shows the simplest model 

containing both a self excitation mechanism and a clearance. Another interesting 

application area is dynamic clearance for example in systems limited by preloaded 

springs with dry friction. These technical applications should be discussed sepa-

rately. The analysis in this section is restricted to the simplest system containing 

both a self excitation mechanism and a clearance. 

3.4.1 The Governing Equations and the Unfolding Transformation 

The equation of motion for our system in undimensioned form can be written as 

follows:

,

; ,

s s h s s

s s s Rs s
(3.63)

Function h s here contains the terms, which describe the nonlinear friction 

characteristic with negative slope: 

2 2 3

1 3 3 3

2 3

1 2 3

1

2 3 3

0

b bh s k k v s k v s k s

h s h s h s

h

(3.64)

We assume here that the equilibrium point of the mass on the moving belt is in 

the middle of the clearance, but we do not assume that the clearance is small. Sys-

tem (3.63) can be regularized by means of the unfolding transformation (3.23). 

2

2 2
;  for 

2

sgn cos

s z

s M z z s M z z z n

M z z

(3.65)

Applying this transformation to (3.63) one can easily obtain equations for the 

unfolded variable z :
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32

2

32211

3

3

2

21

4
;

2
;

2
,1

2
,

hhhhhh

nzzRzz

nzzhzMzhzhzzMz

(3.66)

We assume that the slope of the friction characteristics (determining energy in-

put) and energy dissipation (both due to friction and collisions) are small values of 

the same magnitude order, i.e. 

1 2 3; ; ; 1 ; 1h O h O h O R O O (3.67)

3.4.2 Analyzing the Unperturbed System and Introducing Energy as 

the Slow Variable 

The unperturbed system related to (3.66) must be investigated in order to find a 

transformation converting (3.66) to the “standard form” for averaging in systems 

with slightly inelastic collisions (3.11). Our objective is (according to standard 

procedure) to find its first integrals and to take them as new unknown functions 

which will be then automatically slow. In this case, the unperturbed system is a 

conservative one (we have supposed both energy input and dissipation are small): 

0z M z z (3.68)

It has an integral corresponding to the energy conservation law: 

2

0

1
;

2

z

E z Q z Q z M d (3.69)

Here E is the integration constant which is equal to the full energy of the un-

perturbed system, Q z is the corresponding potential energy. The introduced 

functions are shown in Fig. 3.11.  

The sense of the transformation (3.23) was to unfold the motion of the mass to 

a “straight line”. It means the variable z have to increase monotonously. As a 

consequence we can limit the following analysis to the rotation of the equivalent 

pendulum omitting the oscillation case completely. It means the full energy must 

be larger than the maximum of the potential energy: 
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8

2

E (3.70)

zM z zQzM z zQ

Fig. 3.11. Functions , ,M z z Q z .

This assumption means from the physical point of view that the mass does not 

change the direction of motion between collisions. Another limit is given by the 

condition, that we consider pure slip motions. This kind of motion is possible only 

for

2

22

8

b
b

v
Evs (3.71)

Qualifying our analysis in this way we can solve (3.69) with respect to the pen-

dulum velocity: 

2z E Q z (3.72)

 The next step is to apply transformation (3.69) to the full perturbed system 

(3.66) considering the full energy as the new unknown function: 

2 3 4

1 2 3

2
2

,
2

1 ,
8 2

E z z M z z z h z h z h z z n

E E R E z n

(3.73)

Considering z  according to (3.72) as the new independent variable the follow-

ing equation in the “standardized form” can be obtained: 
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1 2

3

2
3

2
2

2 2

2 ,
2

1 ,
8 2

dE
h E Q z h E Q z M z

dz

h E Q z z n

E E R E z n

(3.74)

The following integrals must be calculated in order to average system (3.74): 

2 2
2

1

2

2

3 2 3 22 2 2
2

3

2

2

2

4
2

2

1 1 2
2 2 arcsin

2 4 2 2

1
sgn cos 0

2

1 3
2 2 2

4 4 4

3
arcsin

2 2

1
2arcsin

2 22

J E z dz E E
E

J E Q z zdz

E
J E z dz E E

E
E

dz
J

EE z

(3.75)

The first order approximation to (3.74) is: 

2

1

3
2 2 2 2

3

2
2

1 2
2 arcsin

2 4 2 2

1
2

8 4

3 3
2 arcsin

4 4 2 2

dE
h E E

dz E

R
E h E

E E E
E

(3.76)
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3.4.3 Discussion of the Results 

Stationary solution of this equation determines periodic oscillations of the mass 

on moving belt with two collisions per oscillation period. The physical meaning of 

this solution becomes clear if we consider the particular case 03h , i.e. friction 

always decreases with the velocity. Then the mass gets additional energy during 

slipping and dissipates while colliding. If the energy obtained during slipping is 

larger than the energy lost by impact, the total energy will increase. But the oscil-

lation amplitude is restricted by the fixed clearance length. So the only way to in-

crease the energy is to increase the velocity and the corresponding oscillation fre-

quency. In other words not the amplitude but the frequency characterizes the 

stationary regime sensibly. The corresponding transient simulation results are 

shown in Fig. 3.12. 

Displacement VelocityDisplacement Velocity
Fig. 3.12. Transient motions of the mass on the belt in a clearance 

Is the stationary energy level E  found from equation (3.76), the correspond-

ing stationary frequency can be found from (3.72). The energy deviation from its 

stationary level has the magnitude order of the small parameter. 

z

QE

d
ttzQE

dt

dz

0

0
2

2 (3.77)

These relationships are valid only between collisions and allow calculating the 

oscillation period and the corresponding frequency: 

2

2

2 4arcsin
2 22

2arcsin
2 2

d
T

EE Q

E

(3.78)



www.manaraa.com

3.4. The “Mass on Moving Belt” in a clearance      115 

2 2 2

1

3
2 22

2

3

1 2 1
2 arcsin

2 4 82 2

3 3
2 2 arcsin

4 4 4 2 2

R
h E E E

E

h E E E E
E

(3.79)

This relationship together with the equation for the stationary energy level 

(3.79) can be considered as a system of two parametric equations determining how 

the oscillation frequency depends on any physical parameter, whereas the energy 

E  is a formal parameter. Figure 3.13 shows for example how the frequency de-

pends on the parameter 1h  for 03h . It also shows the comparison with the 

numeric solution, which seems to be quite acceptable in this case. 

approximate prediction exact solution

-h 1

Fig. 3.13. Comparison between numeric solution and analytic approximation for 

0.95R

The maximal belt velocity limiting the area of self-excitation and the corre-

sponding frequency are given by (3.80).  

2
max max1

3

2
; 1

3 4
b b

k
v v

k
(3.80)

The minimal velocity for pure slip oscillations is given by (3.71). The corre-

sponding frequency is 

min

min

arcsin2
b

b

v

v
(3.81)
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Motions of the considered type are possible if inequalities (3.70) and (3.71) are 

compatible: bv . Figure 3.14 shows how the frequency depends on the belt 

velocity for the following parameter values: 

5,0;95,0;5,0;12 31 Rkk .

v b

Fig. 3.15. Oscillation frequency as a function of the belt velocity 

must be changed while operating. 

3.5. Resonance of the Impact Oscillator Limited at One 
Side under External Excitation 

Self excited systems with almost elastic collisions were considered in the pre-

vious sections. Now we are going to investigate how discontinuous systems be-

have if they are excited by some external source. We start with the simplest exam-

ple – a linear oscillator limited at one side.  

3.5.1 Equations of Motion and the Unfolding Transformation 

Fig. 3.15 shows the system under consideration: a mass described by its co-

ordinate s t  is attached to a damped linear spring and excited by a harmonic 

force. The mass can collide with a quasi-elastic stop at a distance  from its static 

The fulfilled analysis underlines the qualitative difference between the system 

limited at one side and the same system in a clearance. The last one is principally 

nonlinear. A stable limit cycle is possible without any additional assumptions con-

cerning the nonlinearity of friction. Collisions are able to stabilize the limit cycle 

themselves. The system can be interpreted as a frequency transformer. It is possi-

ble to control the oscillation frequency varying the belt velocity and as a result 

changing the negative slope of the friction characteristics. The same effect can be 

achieved if it is possible to change the clearance length. These properties of the 

mass on the belt in a clearance open an opportunity to use it or similar systems as 

a dynamic damper which frequency can be easily adjusted in a wide range. It can 

be also used in order to excite vibrations in machines if the oscillation frequency 
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equilibrium point. As usual in this chapter, the analysis is restricted to oscillations 

with collisions only.  

F(t)F(t)

Fig. 3.15. The classical oscillator limited at one side and excited by an external force 

The equation of motion and corresponding kinematic conditions describing 

collisions can be written in an undimensioned form as follows: 

sin , if

; , if

s s s t s

s s s Rs s
(3.82)

This system differs from the already considered system (3.4) through the exter-

nal excitation term sin t . Damping coefficient is supposed to be positive and 

the motion is limited from the right side. The already known unfolding transfor-

mation (3.4) can be applied here too: 

s z (3.83)

Applying this transformation to the equations (3.82) one can easily obtain equa-

tions governing the unfolded variable: 

sin sgn , 0

1 , 0

z z z t z z

z z R z z
(3.84)

We suppose here, as usual in the resonant problems, that damping, dissipation 

due to collisions and amplitude of the excitation force are small. In addition we 

assume the distance between the mass equilibrium point and the limit to be also 

small (cf. (3.8)). The unperturbed system corresponding to (3.84) is a linear con-

servative oscillator. So the Van-der-Pol transformation can be applied to transform 

(3.84) to an appropriate form: 

sin ; cosz A z A (3.85)

It is also useful to introduce a new uniformly rotating phase instead of time 

t (3.86)

and to convert to an autonomous system:  
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2cos sin cos sgn sin ,

1 ,

sin
1 sin cos sin

A A n

A A R A n

A

(3.87)

All the previous problems discussed in this chapter were described by autono-

mous systems of the second order, i.e. their phase space was 2-dimensional. Now 

we consider the first problem with 3-dimensional phase space. System (3.87) is 

still not converted to the “standard” form for averaging (3.11), because it contains 

two fast rotating phases  and .

3.5.2 Resonances in the Almost Linear System 

Different types of solutions can be investigated in this system. Usually the 

resonant solutions are of the most interest in applications, because in these cases 

the oscillation amplitude is large (has the magnitude order of one) even though the 

excitation force is small. From the physical point of view the small energy input 

due to harmonic excitation force is balanced in the resonant case by the small en-

ergy dissipation due to internal damping and almost elastic collisions. But system 

(3.84) is nonlinear not only due to collisions but also because the excitation term 

on the right hand side is multiplied by sgn z . What are the resonances in such a 
nonlinear system?  

The general definition of a resonance in the averaging method is well known 

(see for example [114, 139]). Especially simple is this definition for almost linear 

systems like (3.87), where all nonlinearities are concentrated in the small terms.  

We will understand a parameter combination for which the time averages of the 

right hand sides of the full equations become discontinuous as a resonance sur-

face.

The resonant solutions are solutions of our system for parameter combinations 

being in the vicinity of the resonant surface (in sense of the small parameter).  

This definition seems to be very unclear for an inexperienced reader. We are 

going to illustrate it considering system (3.87). The corresponding unperturbed 

system is quite easy: 

0; 1;A (3.88)

Its solution is 

0 0 0; ;A A t t (3.89)
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Now we have to average the right hand sides of (3.87) along the solutions 

(3.89) and find for which values of the parameter this average becomes discon-

tinuous. The only terms which can become discontinuous are 

2

0

2

0

0 0

1
sin cos sgn sin sin cos sgn sin

2

1
sin sin sin sin

2

t t tdt

t t dt
(3.90)

 It is easy to notice considering Fig. 3.2 that the function sin t  is -periodic,

in other words its frequency is 2. Even more, if we take a Fourier-expansion for 

this function it will contain all the components with frequencies 

2 , 1, 2,3,k k  and only these components. But the terms we are interested in 

are nothing different but the Fourier-coefficients for this function! In other words 

the integrals (3.90) are equal to zero for all values of the excitation frequency 

except the countable number of values: 

2 ; 1,2,3,k k k (3.91)

These are our resonant parameter values. Let us investigate equations (3.87) in 

the small vicinity of each resonance.  

3.5.3 Averaging in the Vicinities of the Almost Linear Resonances 

We introduce a small frequency delay and a new variable as follows: 

1;
2 2k k

(3.92)

Now our equations can be rewritten in the following form: 

2

1

1

cos cos sgn sin

sin 2 cos sgn sin ,

1 ,

sin cos sin 2 sin

1 sin cos sin 2 sin

A A

k n

A A R A n

A k

A k

(3.93)
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Supposing to be small we can consider (3.93) as a system in the required 

form. It contains two slow variables, one of which is discontinuous, and one fast 

rotating phase. The discontinuous averaging procedure can be applied to this sys-

tem. In order to do it the following integrals must be calculated: 

2

1

0 0

2

2 2

0

2

3 2

0

2

4

0

1 1
sin 2 sin sin 2 sin 0

2

1 2
cos 2 sin

2 4 1

1 4
sin 2 cos sgn sin

2 4 1

1
cos 2 cos sgn sin 0

2

J k d k d

J k d
k

k
J k d

k

J k d

(3.94)

Averaging (3.93) and taking (3.94) into account the following equations of the 

first order approximation can be obtained: 

2

2

1 1 4
cos 2

2 3 4 1

2 2 sin 2

3 4 1

R k
A A k

k

k

A Ak

(3.95)

The already known effective damping can be also introduced in (3.95), but the 

effect of the collisions cannot be reduced to the increased damping. The main 

nonlinear effect here is the infinite number of resonances. A stationary solution to 

(3.95) can be obtained by setting its right hand sides to zero: 

2

2

2
cos 2

2 3 4 1

2 2
sin 2

3 4 1

eff
A k

k k

A k
k

(3.96)

Eliminating the phase difference one obtains an equation for the stationary 

oscillation amplitude: 
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2 2
2 2

2

1 1
2

2

42
;

;
2 3 4 1

k
k

R

k k

A A

k k

(3.97)

This equation has two solutions: 

2 2 2 2 2

1,2 2 2

2 k k k

k

A (3.98)

The expression under the square root must be positive in order for the station-

ary condition to exist: 

2

2
1k

k

(3.99)

3.5.4 Stability of the Stationary Solutions 

Stability of the stationary solutions must be analyzed in order to distinguish be-

tween the two solutions (3.98). This can be done quite easily if we rewrite (3.95) 

as follows: 

2
2 cos 2

2 sin 2

k
k

k

k
A k A k

k

A A

(3.100)

Equation in variations can be obtained if we linearize (3.100) in the vicinity of 

the stationary solution (3.96): 

2

;

2
2 sin 2 2

2 sin 2
cos 2 2

k
k

k k

A A A

k
A k A k k

k
A k k

A A

(3.101)

The corresponding characteristic equation is given as follows: 
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24 sin
det 0

eff k

eff

k

A
(3.102)

The relationships (3.96) for the stationary solutions are taken into account. 

(3.102) is a simple quadratic equation for the natural values. It is necessary and 

sufficient for the asymptotic stability of the stationary solutions, that the coeffi-

cients of the characteristic polynomial are positive (which means that the effective 

stiffness and effective damping must be positive). These conditions can be written 

as follows: 

2 2

0

2

eff

k

A
(3.103)

Comparing (3.103) with the stationary solutions for the amplitude (3.98) one 

can see that only the solution with plus in front of the square root is stable. 

3.5.5 Discussion of the Results, Comparison between Analytic and 

Numeric Predictions 

The following figure shows the already mentioned countable set of resonances 

in our system. 

numeric simulation analytic prediction

Fig. 3.16. Numeric simulations for the resonance sets and analytic prediction for the maxi-

mal amplitude in each resonance set 

It is important to notice that the set of resonances is not a consequence of a 

poly-harmonic excitation but a response of a nonlinear system to a pure harmonic 

excitation. Figures 3.17 and 3.18 show the zoomed comparison for the main reso-
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nance 1k  and illustrate the accuracy of the approximate solution. The analysis 

was performed for the following parameter values: 

0.01, 0.01, 0.95, 0R for the results shown in Fig. 3.17 

0.01, 0.01, 0.6, 0R    for the results shown in Fig. 3.18. 

The accuracy of the approximate analytic prediction remains quite good even in 

the second case although the collisions are not really “almost elastic” any more. 

The corresponding “small” parameter 1 0.4R is not small, so one could ex-

pect not only quantitative (about 40%) but also qualitative discrepancies. But it is 

obviously not the case and the prediction (3.98) remains acceptable.  

Theory Numeric

Fig. 3.17. Comparison between analytic and numeric predictions: R=0.95. 

Theory Numeric

Fig. 3.18. Comparison between analytic and numeric predictions: R=0.6. 

Figure 3.19 illustrates how the gap influences the resonance’s shape. It is in-

teresting that the maximal amplitude does not depend on , but this constant 

value corresponds to continuously varying excitations frequency. This result is 

similar to that in the previous section. Figure 3.20 confirms this statement compar-

ing analytic prediction for maximal oscillation amplitude over all excitation fre-

quencies for a given gap with numerical simulation results. The small discrep-

ancy (the maximal numerical amplitude is not exactly constant but increases 

slightly with the increasing gap) has the magnitude order of the small parameter 

and can be obtained if necessary by analyzing the second order approximation like 

it was done in the previous section. We omit here this analysis in order to avoid 

unnecessary repetitions.
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Fig. 3.19. Resonant curves (amplitude vs. frequency) for different gap values. Approximate 

analytic prediction. 

A max

Theory Numeric

Fig. 3.20. Comparison between analytic and numeric predictions for the maximal resonant 

amplitude as a function of the gap length 

3.6. Nonlinear Resonance of the Externally Excited 
Oscillator in a Clearance 

The last example we are going to discuss in this chapter concerns dynamical 

properties of the resonantly excited oscillator in a clearance.  
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3.6.1 Equations of Motion and the Unfolding Transformation 

Fig. 3.21 displays the system under consideration: a mass described by its co-

ordinate s t  attached to a damped linear spring and excited by a harmonic 

force. The mass is placed in a clearance which length is 2d  and can collide with 

each side of it. The static equilibrium point of the mass is in the middle of the 

clearance.

2d

F(t)

2d

F(t)

Fig. 3.21. The classical oscillator limited at one side and excited by an external force 

The equations of motion and corresponding kinematic conditions describing 

collisions can be written in an undimensioned form as follows (we consider the 

case of a harmonic excitation): 

sin , if

; , if

s s s a t s d

s s s Rs s d
(3.104)

This system according to its formulation seems to differ only insignificantly 

from the one discussed in the previous section. However, as we already know due 

to the analysis of the self excited systems, a mass, which motion is restricted at 

one side, is (in the unfolded form) similar to a linear oscillator. A mass in a clear-

ance in the unfolded form does not even oscillate. Its motion is similar to the rota-

tion of a pendulum in an appropriate periodic field and its behavior is significantly 

nonlinear.  

The unfolding transformation used in the section 3.4 can be applied here too. 

The corresponding functions are shown in Fig. 3.11 

0

2
; arcsin sin ;

sgn cos

z
d

s z z M d z

M z z

(3.105)

Applying this transformation to the system (3.104) one can easily obtain equa-

tions governing the unfolded variable: 
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sin ,
2

1 ,
2

2

z z z M z M z t z n

z z R z z n

a

d

(3.106)

3.6.2 Analyzing the Unperturbed System and Introducing Slow and 

Fast Variables

We suppose here as usual in the resonant problems that damping, dissipation 

due to collisions and amplitude of the excitation force are small. The unperturbed    

system corresponding to (3.106) is a conservative one. It means, we assume 

0; 0; 1R . In this case the full energy of the pendulum is constant  

2

0 0

0

1
;

2

z

E z Q z Q z M d (3.107)

Resolving this equation with respect to the pendulum rotation speed (only the 

rotation case is considered here) we obtain a first order differential equation which 

can be easily integrated. 

0

0 0 0

2

2
2

z
d

z E Q z t t
E Q

(3.108)

Function 0t z calculated according to (3.108) is displayed in Fig. 3.22. It is 

important to notice that the full time between two collisions corresponding to the 

period of motion with respect to the variable 0z  i.e. 02 2
z can be found 

quite easily (compare section 3.4): 

2

2

2arcsin
2 22

d
T

EE Q
(3.109)

The solution  (3.107), (3.108) can be considered as the basis for the analysis of 

the full system (3.105).  

.
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z 0

t

Fig. 3.22. Solution of the unperturbed system 

We introduce the energy as the new unknown function instead of the pendulum’s 

speed z , replace the time by a new uniformly rotating phase and convert to z as

the new independent variable:  

t (3.110)

2
2

2 sin ,
2

1 ,
8 2

2

1

E E Q z M z z n

E E R E z n

E Q z

z

(3.111)

System (3.111) is very interesting. It contains one slow variable E and two fast 

rotation phases (i.e. monotonously increasing variables) and z . Similar to the 

previous section we are interested in the resonant motions. But the difference be-

tween this system and that in the paragraph 3.5 is the fact that is not constant 

here. It depends both on fast and slow variables. What is the resonance in this 

case? 



www.manaraa.com

128      3. Systems with Almost Elastic Collisions 

3.6.3 Resonances in the Significantly Nonlinear System 

The only difference in the resonance definition between the almost linear case 

considered above and significantly nonlinear case here is as follows. In the almost 

linear case the resonant surface was determined in the parameter space. In the 

nonlinear case it can be determined as a subset of the phase space corresponding 

to the set of the slow variables’ values (which are actually constants in the unper-

turbed equations) for which the time averages of the right hand sides of the full 

equations become discontinuous. The resonant solutions are solutions of our sys-

tem for slow variables being in the vicinity of the resonant surface (in sense of the 

small parameter). We are going to illustrate this definition considering the system 

(3.111). The corresponding unperturbed equations are quite easy: 

0

2

0

2 2

1

z

E

d

E Q z E Q

z

(3.112)

Now we have to average the right hand sides of (3.111) along the solution 

(3.112) and find out for which values of the energy this average becomes discon-

tinuous. The only term which can become discontinuous is 

0

2

sin
2

z
d

M z
E Q

(3.113)

 It is easy to notice considering Fig. 3.22 and the relationship (3.109) that the 

function M z  is 2 -periodic, in other words its frequency is 1. The average 

(3.113) is not equal to zero if the argument of the sin-function has the same period 

as the function M z . It means the main resonant surface corresponds to the en-

ergy level fulfilling the condition 

2

2

2

d
T

E Q
(3.114)

This is not the only resonant surface in our problem. A countable number of 

resonant surfaces exist in this system, similar to the previous section. They fulfill 

the relationship 
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2 1 ; 1, 2,3,T k k (3.115)

However we restrict our analysis to the main case (3.114) in order to avoid un-

necessary complications. It means we investigate oscillations of the same fre-

quency as the external excitation. The equation (3.114) can be resolved with re-

spect to the resonant energy level: 

2

28sin2arcsin
22 2

R

R

E

E

(3.116)

The energy must be sufficient large according to the sense of our unfolding 

transformation: 

2 8E (3.117)

 This inequality is equivalent to the corresponding relationship for the excita-

tion frequency: 

1 (3.118)

3.6.4 Averaging in the Vicinity of the Main Nonlinear Resonance 

Now we would like to analyze solutions to the equations (3.87) in the vicinity 

of the main resonant surface (3.116). The system (3.111) must be transformed to 

the “standard form”. It can be done if we investigate its solutions in the -

vicinity of the resonance and consider as the new small parameter. The de-

tails are discussed in the Chapter 5 which is mainly devoted to systems interacting 

with an energy source of limited power (induction motor). It is easy to notice that 

an intention to analyze the system in the -vicinity of the resonance would not 

lead to a system with slow variables. 

We introduce a new variable describing the difference between the actual en-

ergy and the resonant energy level: 

RE E u (3.119)

Then the equations of motion can be rewritten as follows if we neglect all the 

terms which are smaller than , i.e. the terms o :
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2

1 1

2 2
2

1

2 2
8 2

3

2

2 sin ,

1 ,

2
2

R

R

R

R

u E Q z M z z n

u u R E z n

u E Q z
E Q z

(3.120)

Variable u is slow with respect to the parameter because  

1 1 1 1

2 2 2 2

, 1

, 1

O R O

O R O
(3.121)

But the variable  contains a fast term. In order to eliminate it the following 

transformation can be performed: 

2

;
2

z

R

dz
R z R z

E Q z
(3.122)

Finally the equations in the “standard form” for systems with almost elastic col-

lisions can be obtained: 

2

2

2

8 2

3

2

2

sin ,

1
,

2

R

R

R

u E Q z

M z R z z n

R
u u E z n

u

E Q z

(3.123)

System (3.123) is suitable for averaging. We need to calculate the following 

averages: 
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2

3 2
2

1 2
2 2 arcsin

2 4 2 2

1 1

2 2 2
4

R R R

R

R R R

E Q z E E
E

E Q z E E

(3.124)

The averages containing R z can be also calculated easily. 

sin 0

2
cos

2

R

M z R z

E
M z R z

(3.125)

The first order approximation to (3.123) can be written as follows: 

2

2

2 2

2 2
4

2
arcsin

8 2 2

21
sin

8 2

R R

R

R

R

R

u

E E

u E
E

ER
E

(3.126)

3.6.5 Equations Governing the Slow Motions; Discussion of the 

Results 

The system (3.126) is actually very simple. It can be easily seen if we eliminate 

the variable u and write one second order equation for the phase difference be-

tween the excitation and the rotation of the unfolded pendulum :
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R
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k M
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E E

EE ER
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(3.127)

This equation describes motions of a pendulum with an additional constant ex-

ternal torque. This result is very typical for the resonant problems and we will 

meet similar equations many times. The main properties of this system are obvi-

ous. An equilibrium point (corresponding to stationary resonant oscillations) exists 

if the external torque is smaller than the “stiffness” of the pendulum. Two solu-

tions of the equation (3.127) exist if this condition is fulfilled. One of them corre-

sponding to positive cos is stable and another one is unstable. The existence 

condition for the stationary regime can be considered as a requirement to the 

minimal excitation amplitude (the relationship (3.116) must be taken into ac-

count).

2

0

2

2 cos
4 1 2

sin 2 cos
2 2 2

sin
2

M k

R (3.128)

The phase portrait of the equivalent resonant pendulum is displayed in Fig. 

3.23. 
'

Fig. 3.23. The phase portrait of the equivalent resonant pendulum; the homoclinic loop 

(thick line) limits the attraction area of the stationary solution (according to the first order 

approximation)
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The minimal excitation level according to (3.128) is shown in Fig. 3.24. 
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Fig. 3.24. The minimal excitation which is necessary for the resonance to exist 

3.6.6 Comparison between Analytic and Numeric predictions 

Figure 3.25 shows a comparison between the analytically predicted oscillation 

frequency in the resonant area and numerical simulation results. 
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Fig. 3.25. Comparison between analytic and numeric predictions 

The results are very accurate even though the formal inaccuracy of the analytic 

prediction has the magnitude order .

The higher order resonances also exist in this system as it was already men-

tioned. The corresponding analytic and numeric results are shown in Fig. 3.26. 
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Fig. 3.26. First and higher order resonances of the mass in the clearance 

Comparing this figure with the results in the previous section one can notice 

that significantly nonlinear resonance considered here exists in the wider fre-

quency range and that several different resonant regimes can exist for the same 

excitation parameters depending on the initial conditions. It means the question 

about the attraction area for each regime becomes sensible. This question for simi-

lar problems is discussed in Chapter 5. 

3.7 Conclusions 

Oscillations of systems with collisions are significantly nonlinear. An efficient ap-

proach for analyzing these oscillations is based on the unfolding transformations. 

It leads to systems with small discontinuities of the velocities if the collisions in 

the original system were absolutely or almost elastic.  

Systems limited at one side are in the unfolded form similar to a linear oscilla-

tor. Systems limited from both sides are significantly nonlinear. This statement is 

illustrated by two groups of examples. 

The classical system with the “mass-on-moving-belt” is considered as the first 

example. It is necessary to take the friction’s nonlinearity into account in order to 

obtain a stable limit cycle in the system limited from one side. This behavior is 

qualitatively similar to that of a not limited oscillator. The behavior of the same 

system in a clearance is different. A stable limit cycle is possible without any ad-

ditional assumptions concerning the nonlinearity of friction. Collisions are able to 

stabilize the limit cycle themselves. The system can be interpreted as a frequency 

transformer. It is possible to control the oscillation frequency varying the belt ve-

locity and as a result changing the negative slope of the friction characteristics. 

The same effect can be achieved if it is possible to change the clearance length. 

These properties of the mass on moving belt in a clearance open an opportunity to 

use it or similar systems as a dynamic damper which frequency can be easily ad-
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justed in a wide range. It can be also used in order to excite vibrations in machines 

if the oscillations’ frequency must be changed while operating. 

The classical externally excited oscillator limited from one or from both sides is 

considered as the second example. A countable number of sharp resonances are 

possible in the system limited from one side. Each of them is quite similar to those 

usual in linear systems.  

The problem of the resonant oscillations of the mass in a clearance is much 

more complex. It can be reduced to the analysis of the rotation of the harmonically 

excited pendulum in a periodical non smooth potential field. The high energy 

resonances are investigated. Accurate analytic predictions for the energies of sta-

tionary resonant regimes are obtained. It is shown that an infinite number of high 

energy resonances exist in this system. Investigations concerning the attraction 

area for particular regimes may be of considerable interest for applications. 
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4. Systems with Strong Dissipation Due to High 

Damping or Inelastic Collisions 

 Systems with small damping, i.e. systems which are close to conservative ones 

in the unperturbed case, were discussed in the previous section. Now we are going 

to analyze another type of discontinuous systems.  

In many practical cases typically connected with bulk material processing, the 

collisions cannot be considered as absolutely or almost elastic. If two rigid bodies 

collide through a layer of a bulk material, the energy dissipation is high. Such a 

situation is usual in jaw crashers, grinding mills and other machines for mechanic 

destruction of ore and stones. The same situation is typical for vibrating screens 

and conveyors, if we are not interested in the motion of each particle, but describ-

ing the layer as a whole. The hypothesis of the absolutely inelastic collisions is 

much more useful in these cases (cf. [18, 20, 65]). 

These machines can often be described as a combination of an almost conserva-

tive part and of a subsystem with strong dissipation. There are some peculiarities 

in the analysis of strongly damped systems in general and in the description of the 

systems with inelastic collisions in particular.   

First of all, systems with inelastic collisions cannot be described by systems of 

differential equations which are valid for all times. The continuous differential 

equations are valid between the collisions and state variables after each collision 

can be calculated as functions of state variables before the collision. There are two 

different types of inelastic collisions. The first one corresponds to collisions with a 

finite time interval of contact between the colliding bodies. In these cases systems 

before and during the collision have different orders. The main interest in this 

chapter is paid to this type of motion. The second type corresponds to inelastic 

collisions with infinitesimally short contacts. This type of motion is less important 

from the practical point of view and is not analyzed here. The corresponding ex-

amples can be found in [15, 18, 58].  

The dissipative subsystem moves in many important cases as a slave of the al-

most conservative subsystem (at least in the first order approximation). This im-

portant property can be used in order to develop efficient analytical methods. This 

approach allows reducing the order of the system under consideration signifi-

cantly.

The last statement is quite general and is not restricted to the systems with ine-

lastic collisions. In the paragraph 4.1 the corresponding asymptotic procedure is 

developed for systems with strong linear damping. The approach is illustrated by 

an elementary linear example in the section 4.2. Another much more complex ex-
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ample describing the unusual effect of the high-frequency excitation on the 

strongly damped control system can be found in Chapter 6. 

The same basic idea enables us to develop the variable order discontinuous av-

eraging procedure, which is useful for analyzing inelastic collision oscillators 

(section 4.3). Compared to the oscillator with almost elastic collision the analysis 

must be restricted to the given collisions sequence, for example to the given num-

ber of collisions for each oscillation period. This restriction is constraining from 

the theoretical point of view, but it is not so critical in practice, because mainly 

dynamic regimes with the most intensive collisions are desired for bulk material 

processing. The corresponding regime of collisions is usually evident, and the 

analysis can be concentrated upon it. 

The classical double restricted impact oscillator with inelastic collisions is con-

sidered in section 4.4. The aim is to demonstrate the main ideas and methods using 

a simple and physically clear object. A similar approach is illustrated in section 

4.5 by a mass restricted on one side and oscillating in the gravity field. This model 

is typical for vibrating screens and conveyors. The described methods are applied 

for a more complex and realistic model of resonant crasher excited by an inertial 

source of limited power in the Chapter 5, dealing with the significantly nonlinear 

resonance.  

4.1. Averaging in Systems with Strong Linear Damping 

4.1.1. The Basic Idea 

Let us start with the following scalar equation illustrating the basic properties 

of systems with the strong linear damping: 

0

,

0 ; 0; 1

x kx X x t

x x k k O
(4.1)

Here , 2 ,X x t X x t  is a bounded continuous periodic function: 

, 1XX x t M O .

It is not possible to transform this equation to the standard form for averaging, 

because the unperturbed equation is  

u ux kx (4.2)

Its general solution is  

kt

ux Ae (4.3)
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Considering A as the new unknown function in (4.1) one obtains the following 

equation:

,kt ktA e X Ae t (4.4)

It seems to be an equation in standard form, but it is actually not, because its 

right hand side is not bounded as a function of t . So the standard averaging can-

not be applied to (4.4). On the other hand it is obvious that general solutions to 

(4.1) and to (4.2) are in some sense close to each other.  

Let us consider the following initial value problem alongside the equations  

(4.1):

1 1 1 0; 0k x (4.5)

In order to compare solutions to (4.1) and to (4.5) let us rewrite (4.1) as an inte-

gral equation: 

0

0

,

t

kt kt kx x e e e X x d (4.6)

Supposing x  to be a solution to (4.6) and substituting it into (4.1) it is easy to 

see that it is also a solution to (4.1) satisfying the right initial condition. Thus ac-

cording to the uniqueness of solution to the initial value problem (4.1), we can 

conclude that  (4.6) is equivalent to (4.1). On the other hand the solution to (4.5) 

corresponding to the same initial condition is: 

1 0

ktx e (4.7)

 Comparing (4.6) with (4.7) we can estimate the difference: 

1

0

0 0

,

,

1 1

t

kt k

t t

kt k kt k

X

kt k kX X X

x e e X x d

e e X x d e e M d

M M M
e e e

k k k

(4.8)

This result is almost trivial. Influence of the initial condition decreases accord-

ing to the linear part of the equation and the perturbation is small. So the station-

ary solution also must be of the same order as the perturbation itself.  

This idea can be developed further if we consider the second approximation. 

How fast the solution to (4.1) will reach the O -vicinity of zero?  
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If 0 1x O  then 

1 ln 1

ln 1

ktO e O kt O

t O
(4.9)

Let us investigate solutions for sufficient large time values, i.e. 

ln 1t O (4.10)

In particular we can get the following estimate 

1

0

1
for

ln

X

X

M
t

k k x
k

M

(4.11)

It means that for the sufficient large time (corresponding to (4.11)) we can es-

timate the solution as follows: 

2 XM
x

k
(4.12)

Now it is easy to find the second order approximation to (4.1) if we suppose 

X to be Lipschitz-continuous function in the vicinity of  0x :

1 2 1 2, , XX x t X x t L x x (4.13)

Equation (4.1) can be rewritten as follows: 

2

0

, 0, ,

0

x kx X x t kx X t G x t

x x
(4.14)

Function G is bounded for the time interval (4.11): 

21
, , 0, X X

X

x L M
G x t X x t X t L

k
(4.15)

We can rewrite (4.14) in the integral form similarly to (4.6): 

2

0

0 0

0, ,

t t

kt kt k kt kx x e e e X d e e G x d (4.16)

Let us compare its solution to the corresponding approximate equation 
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2 2 2 0

2 0

0

0, ; 0

0,

t

kt kt k

k X t x

x e e e X d
(4.17)

The analysis does not differ in any relation from (4.8) and the result is: 

2 2

2 2

0

2
,

t

kt k X XL M
x e e G x d

k
(4.18)

Summarizing one can say that solutions to (4.1) and to (4.17) are close to each 

other with an error estimated through (4.18) for sufficiently large time (4.11). 

This result has nothing to do with averaging. It is obtained only due to the ex-

ponential properties of the solutions to (4.1).  

4.1.2. Averaging in Systems with Strong Damping with Respect to 

one or Several Variables 

These ideas can be directly combined with the averaging if we consider a sys-

tem with some additional oscillating degrees of freedom: 

0 0

, ,

, ,

0 ; 0

x X x y t

y ky Y x y t

x x y y

(4.19)

Functions X and Y  are assumed to be periodic with respect to t  and bounded 

and Lipschitz-continuous with respect to x and y together with their first deriva-

tives.

We are going to build the corresponding approximate system combining the 

averaging ideas with the results of the just performed analysis. The “averaged” 

approximation to (4.19) has the following form: 

2

1 2

0 0

,0,

0 ; 0

k Y t

x y

(4.20)

Functions 1  and 2  will be determined later. Solutions to (4.19) and (4.20) 

must be asymptotically close to each other with an error 
2O  for the time in-

terval
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ln 1 1O t O (4.21)

The first approximation is obvious. According to (4.11), (4.12) y O  for 

the time interval (4.21). So the equation for x can be rewritten as follows: 

2,0,x X x t O

y O
(4.22)

To this system we can apply the standard averaging and obtain 

1 1 1 1 1 1

1 1

; ,0,X t

k
(4.23)

It is clear from (4.23) that the equations for and in the first approximation 

are totally separated. The difference between x  and 1  is a small oscillating 

function as it is usual in the averaging: 

1 1,x u t (4.24)

Taking (4.14) into account we can rewrite the last equation in (4.23) as follows: 

2, , ,0, , ,y ky Y x y t ky Y x t G x y t (4.25)

Function G  is introduced here similarly to (4.14). We know already that the so-

lution of this equation is close to the solution of the corresponding shortened equa-

tion in the relevant time interval 

2

2 2

2

2

,0,

,0,

k Y x t O

Y x t O
k

(4.26)

This expression can now be inserted into equation for x :

2
2 3, , ,0,

X
x X x Y O t X x t Y O

k k y
(4.27)

Now the standard averaging can be performed as an almost identical transfor-

mation:

2

1 2, ,x u t u t (4.28)
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Here  is governed by the first equation (4.23). Substituting (4.28) into (4.27), 

balancing terms of the same -order and eliminating singular terms one obtains 

(4.23) with the following expressions for the functions on the right hand sides: 

2 2

1 2

2

0 0

1

1 1

0

2 1

0 0

,0,

0 ; 0

,0,

,0,

1
,0,

t

y y

O

k Y t O

x y

X t

u X d

X X
u Y t

x k y

(4.29)

The proof validating the shortened form (4.19) is a direct combination of the 

standard averaging proof with the estimation (4.18). 

These results can be easily generalized for the case when y  is a vector and 

k  is a matrix which natural values have only negative real parts. 

The performed analysis is quite similar to that published by Volosov V. M. and 

Morgunov B. I. [133]. The “slave” variables y are related to non critical fast vari-

ables introduced there. 

Looking at (4.26) one can easily notice why we call these variables “slaves”. 

They don’t have their own dynamics and can be expressed as functions of the 

“master” variables x . In other words, if we know the master variables as functions 

of time, we can calculate the slave variables without solving any additional differ-

ential equation. 

The next paragraph illustrates this approach. 

4.2. Linear Resonance in a Strongly Damped System with 
Two Degrees of Freedom 

4.2.1. Equations of Motion 

An elementary mechanical system with two degrees of freedom is analyzed in this 

section in order to illustrate the averaging procedure for strongly damped systems. 
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Consider a system shown in Fig. 4.1. It consists of a large mass M  to which a 

small mass m  is attached. The relative motion between these two masses is 

strongly damped (damping coefficient is b ). C and c  are the spring stiffnesses. 

The large mass is excited kinematically.  

sina t

C

M
c

b

m
sina t

C

M
c

b

m

Fig. 4.1. The linear system with two degrees of freedom and strong damping 

This is a linear system and its general solution can be found in any textbook on 

linear oscillations. Nevertheless we analyze it because it demonstrates some im-

portant properties of strongly damped systems which are also important for sys-

tems with inelastic collisions.  

The motions of this system are governed by the following equations: 

1 1 1 2 1 2

2 2 1 2 1

sin

0

Mx Cx b x x c x x Ca t

mx b x x c x x
(4.30)

It is sensible to introduce new variables describing the position of the system’s 

mass center and the relative motion between the masses: 

1 2
2 1;

Mx mx
s r x x

M m
(4.31)

Equations governing these variables can be written down in the undimensioned 

form as follows: 

2

1 1 sin

2
sin

1 1

s s r a t

p p
r r r s r a t

(4.32)

The following variables and parameters are used in these equations: 

; ; ; ; ;
2

;

m C c b
k p

M m M m m k k

kt d d

(4.33)
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We are going to analyze this system supposing the second mass to be small in 

comparison to the whole mass of the system. We suppose further the excitation’s 

amplitude to be small compared to oscillation’s amplitude, i.e. 

1; 1a (4.34)

However we do not assume the damping to be small, i.e. 1O .

Now we can linearize the equations (4.32) with respect to the introduced small 

parameters: 

2 2

sin

2 2 1 sin

s s s r a t

r pr p r s pr p r a t
(4.35)

This is the system we are going to analyze. 

4.2.2. Perturbation Analysis. Transformation to the Form suitable for 

Averaging 

Consider the unperturbed system related to (4.35): 

0 0

2

0 0 0 0

0

2 0

s s

r pr p r s
(4.36)

One can easily notice that the subsystem governing the variable s  is in this ap-

proximation separated from the subsystem governing the variable r . The variable 

0s  is governed by a conservative equation (there is no damping in the correspond-

ing unperturbed subsystem). The variable 0r  is to the contrary strongly damped 

and the solution 0s  is an external excitation for it. In other words, we can write 

down the general solution for
0

s :

0 0sin ; cos ; ;s A s A A const const (4.37)

Then we can rewrite the equation for 0r :

2

0 0 02 sinr pr p r A (4.38)

Our objective is to transform the equations (4.35) to the form (4.19) which con-

tains the damping terms explicitly. In order to achieve this aim we do not need the 

general solution to (4.38). We need only the particular solution corresponding to 

the enforced oscillations. It can be found in the following form: 



www.manaraa.com

146      4. Systems with Strong Dissipation Due to High Damping or Inelastic Collisions 

0 0 1 2 0

2

1 22 2
2 2 2 2 2 2

sin cos ;

1 2
;

1 4 1 4

r q A A q const

p p

p p p p

(4.39)

The equation governing the variable q is:

2

0 0 02 0q pq p q (4.40)

It can be easily transformed to a set of simple first order differential equations 

if we apply the following transformation: 

2

0 0 0 0 0 0 0 0sin ; sin 1 cosq u q pu p u (4.41)

This transformation corresponds to the general solution to (4.40): 

2

0 sin 1ptq const e p t const (4.42)

Variables u and  in this approximation are governed by the following equa-

tions:

0 0

2

0 1

u pu

p
(4.43)

Let us consider ,A  and q as the new variables and apply (4.37) and (4.39) as 

the variable transformation to the equations (4.35): 

1 2

sin ; cos

sin cos

s A s A

r q A A
(4.44)

The result is the system governing the new variables: 

1 2

1 2

2

1 2

2

1 2

1 sin cos cos sin cos

1 1 sin cos sin sin sin

2 2 cos sin

1 sin cos sin

q
A A a t

A

q a
t

A A

q pq p q p q A A

p q A A a t

(4.45)

Now the transformation (4.41) can be applied directly to the last equation: 
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2sin ; sin 1 cosq u q pu p u (4.46)

We obtain finally a system of the first order differential equations governing 

the new variables: 

1 2

1 2

2

1 2

2

1 2

2

sin 1 sin cos cos

sin cos

1 sin 1 sin cos sin

sin sin

2 cos sin 1 cos

cos sin sin cos

1 cos sin sin cos

1 2 s

A u A A

a t

u

A

a
t

A

u pu p pu

A A a t

p u A A

p p 2

1 2

2

1 2

in sin 1 cos

cos sin sin sin

1 sin sin sin cos

pu

A A a t

p u A A

(4.47)

The obtained equations have the specific form similar to (4.19). The variable 

A  is slow. The variables  and  are the fast rotating phases with almost con-

stant velocities. The variable u  is the strongly damped one.  

Let us consider the principal resonance in this system, which means the excita-

tion frequency is close to the partial frequency of the large mass and the small 

mass is tuned to this frequency too: 

2

1 ; 1

1 1 ; 1p
(4.48)

In this case we can introduce the new variables meaning the corresponding 

phase differences: 

; ;t (4.49)

For these variables we can obtain the following equations: 
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1 2

1 2

1 2

2

2

1

cos 1 sin cos

sin cos sin cos

sin 1 sin cos

sin sin sin sin

2 sin cos sin

sin 1 cos

1 sin sin

A A

u a

u a

A A

pA

u
p

A

A p 2

2

1 2

2

2

1 2

2

cos

1 sin sin sin sin

2 cos cos sin

sin 1 cos

1 cos sin cos

1 cos sin sin cos

p u a

u pu

pA

u
p

A

A p

p u a

(4.50)

These are the equations in the required form (4.19). We have here the slowly 

oscillating variables , ,A , the fast rotating phase  and the strongly damped 

(uncritical) fast variable u . The averaging procedure described in the section 4.1 

can be applied to this system. 

4.2.3. Equations of the First Order Approximation. Discussion of the 

Approach 

Averaging the equations (4.50) one obtains a system in form (4.20). However we 

restrict the analysis to the first order approximation and omit the small terms. The 

equations can be split into two groups. The first one describes the motions of the 

centre of mass (variables ,A ). The second one describes the “degenerated” 

slave motions (variables ,u ).
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2

1

2

1 2

1 2

1 1 1
sin sin

2 2 2

1 1 1
1 cos cos

2 2 2

1
1 cos sin

2

sin cos

1
cos

2

A A u a

u a

A A

u pu

u
A p

A

u
pA p

A

a

(4.51)

Index 1 for the first order approximation is omitted here.  

It follows directly from the third equation that the stationary solution for the 

strongly damped slave variable u  is equal to zero. It means that the variable q is
also equal to zero in the first order approximation. So it does not make sense to 

calculate the variable  describing the phase of these oscillations (the phase does 

not matter, if the amplitude is equal to zero). We can consider only the first two 

equations in determining the oscillations of the large mass: 

2

1

1 1
sin

2 2

1 1
1 cos

2 2

A A a

a

A

(4.52)

The final equations (4.52) are very simple, but the method we used to obtain 

them seem to be rather complex as well, as the intermediate equations (4.50). We 

have used this way in order to demonstrate the formal approach. However we 

could easily avoid these complications if we have noticed that r  is the strongly 

damped slave variable. It can be replaced through the particular enforced solution 

(4.44) and all the terms containing q  could be omitted from the very beginning.  

The formal approach is necessary if we cannot limit the analysis to the first or-

der approximation and need the higher ones. Such an example can be found in 

Chapter 6. 

The stationary solution to the system (4.52) can be obtained if we set the right-

hand sides of these equations to zero and eliminate the phase difference . The 

stationary amplitude depends on the difference between the natural and the excita-

tion’s frequencies and on the system’s parameters as follows: 
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2 2 2

1 2

2

1 22 2
2 2 2 2 2 2

2 1

1 2
;

1 4 1 4

a
A

p p

p p p p

(4.53)

The considered principal resonance (4.48) means the following relationship be-

tween the parameters (with the accuracy of the first order): 

2

1

1
p (4.54)

4.2.4. Comparison with the Numeric Experiment. Discussion of the 

Results 

Figure 4.2 shows the comparison between the approximate analytic prediction 

(4.53) and the direct numeric simulations of the original system (4.32). The calcu-

lations were performed for the following parameter values: 

1 2

1; 1; 0.01; 0.01; 0.005; 0.01; 1

1; 0.01; 0.25; 1; 0; 2; 0.032

M C m c b a k
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Fig. 4.2. Resonant amplitude as a function of the frequency delay; the solid line corre-

sponds to the analytic prediction; the dots correspond to the results of the numeric simula-

tions
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The difference between the predictions is quite acceptable and corresponds to 

the asymptotic accuracy of the first order approximation.  

It is also interesting to investigate how the resonant amplitude depends on the 

damping between the large and the small masses. The simplest result can be ob-

tained if we suppose 1p . It means the partial frequencies of the large and the 

small masses are equal. Then it is easy to see that 1 2

1
0;

2
and the 

equation for the stationary amplitude can be simplified as follows: 

2
2

2
2

4

a
A

(4.55)

It becomes evident from this equation that the resonant amplitude increases if 

we increase damping. Figure 4.3 illustrates this result for 0 . All other pa-

rameters are the same as in the previous case. 

0

0 2

0 4

0 6

0 8

1

0 0 2 0 4 0 6 0 8 1

sc
il

la
ti

o
n

s
 

a
m

p
li

tu
d
e 

A

damping coefficient 

0

0 2

0 4

0 6

0 8

1

0 0 2 0 4 0 6 0 8 1

sc
il

la
ti

o
n

s
 

a
m

p
li

tu
d
e 

A

damping coefficient 

Fig. 4.3. Resonant amplitude as a function of the damping between the large and the small 

masses; the solid line corresponds to the analytic prediction; the dots correspond to the re-

sults of the numeric simulation 

The correlation between the numeric and the asymptotic predictions remains 

acceptable. The discrepancy increases for small damping coefficients. This could 

be expected because the whole analysis is based on the assumption that the damp-

ing coefficient is not small. Only that’s why we could set the variable u  to zero. 
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The result itself, however, seems to be unexpected. It is common that increas-

ing damping reduces the resonant amplitude. Here we see the opposite effect. Its 

physical explanation is simple.  

We have considered the amplitude for the exact resonance of the large mass 

(not for the whole frequency range as it is usual for dynamic dampers). The large 

damping connects the large and the small masses. We strengthen this connection 

increasing the damping. The infinite damping means nothing different but the 

rigid connection of the masses. In this case we would obtain a linear oscillator 

without any damping. In other words the strong damping prevents intensive rela-

tive movements between the masses. This is the reason for the apparent paradox.  

This is also the physical reason for the “slavery” of the small mass. It is very 

important to notice that the strongly damped “slave” does not have its own dy-

namics. Due to the strong damping it can only follow the motions of the “master”. 

We will see the same behavior in the next paragraph, where the source of the in-

tensive energy dissipation is not the linear damping but absolutely inelastic colli-

sions between the masses. 

4.3. Averaging in Systems with Inelastic Collisions: Basic 
Ideas and General Approach 

4.3.1. Basic Types of Motion in Systems with Inelastic Collisions: 

Elementary Examples 

An inelastic collision of one-dimensional rigid bodies means that their velocities 

after the collision are equal. It does not mean however that the two bodies neces-

sarily move together after the collision. In order to see it consider the following 

example shown in Fig. 4.4. 

Fig. 4.4. A rigid oscillating frame with a free mass inside 
a

a sin t
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This system consists of a rigid harmonically oscillating frame and a free mass 

inside of it. This system is the simplest model for a stone crasher. The frame 

represents the oscillating housing of the machine and the free mass corresponds to 

the crashing body. Fig. 4.5 and 4.6 show the two qualitative different types of mo-

tions of the free mass after a collision. It is characteristic for the first type of mo-

tion that the colliding bodies (the mass and the frame) move together for a certain 

finite time interval. 
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Fig. 4.5. Motion of the mass in the oscillating frame with long time intervals of contact; 

thin lines correspond to motion of the frame; thick lines correspond to motion of the free 

mass 

The second type of motion is characterized by the fact that the time interval of 

the contact between the colliding bodies (the mass and the frame) is infinitesi-

mally short. The physical difference between these two types of collisions is very 

simple. In the first case the contact force after the collision remains positive. In the 

second case the contact force after the collision would be negative if we suppose 

the contact to continue. It means the immediate contact lost after the equalizing of 

the velocities.  

It is not difficult to calculate the contact force in this case. For the contact with 

the bottom of the frame one obtains: 

2; sin sinbottom bottom

contact contactF mx x a t F ma t (4.56)
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 The equation for the contact with the top of the frame is similar: 

2; sin sintop top

contact contactF mx x a t F ma t (4.57)
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Fig. 4.6. Motion of the mass in the oscillating frame with infinitesimally short time interval 

of contact; thin lines correspond to motion of the frame; thick lines correspond to motion of 

the free mass 

It means the contact with the bottom of the frame after a collision is possible as 

long as the acceleration of the frame is positive. The contact with the top of the 

frame is possible as long as the acceleration of the frame is negative. If these con-

ditions are not fulfilled to the time of collision the mass looses the contact imme-

diately.

Figures 4.5 and 4.6 show simple periodic motions with long contact and infini-

tesimally short contact respectively. The mass collides with each side of the frame 

once per each oscillations period. These are the simplest oscillation regimes in this 

system but different much more complex regimes are also possible. Figure 4.7 

shows a periodic regime where the mass collides with each side of the frame once 

per three oscillation periods. 

timetime

timetime

co
o
rd

in
at

es
co

o
rd

in
at

es
v

e
lo

ci
ti

es
v

e
lo

ci
ti

es

.

.



www.manaraa.com

4.3. Averaging in Systems with Inelastic Collisions: Basic Ideas and General Ap-

proach      155 

-1

-0 5

0

0 5

1

0 10 20 30

co
o
rd

in
at

es

time
-1

-0 5

0

0 5

1

0 10 20 30

co
o
rd

in
at

es

time

Fig. 4.7. Periodic regime with one collision at each side of the frame per three oscillation 

periods

Figure 4.8 shows a periodic regime with different types of motions after the 

collisions with the top and with the bottom of the frame. Figure 4.9 shows a com-

plex periodic regime.  

These examples demonstrate that even though the considered system seems to 

be very simple, its dynamic behavior can be quite different depending on the pa-

rameter values. But all these regimes are based on the described two types of col-

lisions:

An inelastic collision with a long contact;  

An inelastic collision with the infinitesimally short contact. 
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Fig. 4.8. Oscillations of the mass in the frame; the long contact follows to each collision 

with the bottom of the frame; the contact after each collision with the top of the frame is in-

finitesimally short 
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Fig. 4.9. Complex oscillations of the mass in the frame with 10 collisions in 7 frame’s os-

cillation periods (one collision at each side is with a long contact and four collisions are 

with short contacts) 

These two basic regimes can be also found in the second example shown in Fig. 

4.10. It is a mass in the gravity field over an oscillating base. This system is the 

simplest model for a vibrating transporter or a vibrating screen. The mass corre-

sponds usually to the layer of a bulk material. 
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Fig. 4.10. A free mass over the harmonically oscillating base 

The contact force can be calculated as follows: 

2; sin sincontact contactF mx mg x a t F m g a t (4.58)

Fig. 4.11 shows an oscillations’ regime with long contacts after each collision. 
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Fig. 4.11. Motion of the mass over the oscillating base with long time intervals of contact; 

the thin line corresponds to the motion of the base; the thick line corresponds to the motion 

of the free mass 

A contact is long if the contact force is positive directly after the collision. It 

means that the time point of collision must fulfill the following condition: 

2 2
2 1 arcsin arcsin 2

2, 1,0,1, 2

long

collision

g g
n t n

a a

n

(4.59)

If these conditions are not fulfilled, the only the infinitesimally short contact is 

possible (see Fig. 4.12): 

2 2
arcsin 2 2 1 arcsin

2, 1,0,1, 2

short

collision

g g
n t n

a a

n

(4.60)

v
el

o
ci

ti
e

s

-1 5

0

1 5

3

0 1 2 3v
el

o
ci

ti
e

s

-1 5

0

1 5

3

0 1 2 3

Fig. 4.12. Motion of the mass over the oscillating base with infinitesimally short time inter-
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The physical meaning of these conditions is quite simple. The mass attains the 

velocity of the base direct after the collision. This velocity remains constant if 

there is no external force. In presence of the external force the mass would decel-

erate (fall down) if the contact would not exist. The base moves according to its 

oscillation’s law. This means that its velocity doesn’t remain constant. If the de-

celeration of the mass is larger than the deceleration of the base the mass will be 

pressed towards the base and the long contact will be established. If the base de-

celerates faster the mass will loose the contact immediately. This means the 

“short” contact. 

Complex regimes with changing types of contact are also possible in the last 

system. Fig. 4.13 shows such an example. 
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Fig. 4.13. Complex oscillations of the mass over the base with changing types of collisions 

4.3.2. On the Practical Importance of Regimes with Long Contact  

The variety of dynamic regimes in the considered examples shows that motions in 

systems with inelastic collisions can be very complex. It is seldom possible to in-

vestigate an initial value problem in these systems analytically. In many practical 

cases however it is not necessary to investigate the general solutions. The desired 

regime is often clear from the technological point of view. The real task in such a 

situation is to choose the system’s parameters guaranteeing existence and stability 

of the required dynamic regime and (if it is necessary) to create the appropriate 

control system.  

The technological processes (screening or crashing) take place usually during 

the collision. It is sensible from that point of view to organize the collisions with 

the highest possible frequency and intensity. Another important criterion is the ro-

bustness of the dynamic regime with respect to inaccuracies and perturbation of all 

possible kinds (like inaccuracy of the system’s parameters, undetermined initial 

conditions and unexpected external influences).  

Let us consider the mass in the frame. The highest frequency of the intensive 

collisions can be achieved if the mass collides once per oscillation’s period with 

each side of the frame. It is sensible to require the highest possible velocity of the 
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mass in order to intensify the collisions. It becomes clear looking at the Fig. 4.5 

that the highest velocity of the free mass can be reached only at the end of the long 

contact phase. That’s why the simplest dynamic regime with two long contacts per 

oscillation’s period is of the most interest for applications. On the other hand the 

velocity of the frame should also be as large as possible (and have the opposite di-

rection with respect to the velocity of the free mass). It means the collision should 

take place as close as possible to the end of the extreme point of the frame’s veloc-

ity, but this point separates the regimes with long and short contacts. Exactly this 

boundary would be of the most technological interest.

The regime with long contacts is also the best one because it is very robust and 

stable. The mass looses the contact with the frame when the contact force becomes 

equal to zero. Then it moves away from the frame with initial position and veloc-

ity determined by the motion of the frame only. These initial conditions don’t de-

pend on the whole prehistory of the system. In other words the system forgets its 

history as soon as the long contact occurs.  

Even large slow changes in the excitation’s amplitude often do not change the 

structure of this regime (the number and type of collisions in each oscillation’s pe-

riod). This statement is illustrated in Fig. 4.14. 
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Fig. 4.14. Slow variations of the amplitude of the frame don’t change the structure of the 

basic regime with long contacts 

The situation with vibrating screens is similar. Regimes with long contacts are 

very robust. The intensity of collisions however increases with the increasing ve-

locity. From this point of view also the regimes with one long collision per several 

oscillations of the base can be technologically interesting. 

These arguments explain the exceptional role of the simple regimes with long 

contacts for applications. That’s why the analysis in this and the next sections is 

concentrated on the simple regimes with long contact. 
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4.3.3. Regimes with Long Contacts as an Example of the Variable 

Order Discontinuous Systems 

Let us consider the mass in the frame and introduce the coordinate system con-

nected with the frame. It means that we describe the motion of the mass relative to 

the oscillating frame. Then the motion of the mass is governed by the following 

equations ( r is the coordinate of the mass; 2l is the length of the frame). 

During the contact phases the coordinate of the mass doesn’t change. It means  

0r as long as r l and
2 sgn sin 0contactF ma r (4.61)

Compare these relationships with the contact conditions (4.56) and (4.57). 

Here and further we use the following notation 

t (4.62)

During the free flight the absolute velocity remains constant: 

20 sinx r a as long as r l (4.63)

The two equation sets must be linked together through the appropriate initial 

conditions for the time (or the phase) corresponding to the beginning of the free 

flight 0 0t and for the time of collision 1 1t  . These values can be de-

termined as follows. 

0 0

0 0

1 sgn
sin 0 2

2

; 0

r
n

r t l r t

(4.64)

1 0 : ; 0r l r (4.65)

Parameter  is the first positive solution of the transcendent equation 

2
sin

l

a
(4.66)

The motion of the mass in these variables is shown in Fig. 4.15 (it corresponds 

to the regime in Fig. 4.5) 
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Fig. 4.15. Motion of the free mass in the oscillating frame; the relative coordinate r and the 

relative velocity r

The considered regime is a symmetric one with respect to motions up and 

down. So it is sensible to introduce the new coordinate and velocity as follows 

sgn sin

sgn sin

u r

v r
(4.67)

The motion in these phase coordinates is shown in Fig. 4.16. 
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Fig. 4.16. The same solutions for the coordinate u  and the velocity v

The solution for these variables can be formalized quite easily. Let us introduce 

the following step function indicating if the mass is in contact with the frame or 

flying up or down (see Fig. 4.17) 

1 1 1

1, 0
, ; 2 , ,

0, 2
M M M (4.68)

Now we can apply the transformation combining (4.67) with the indicator-

function:

2 1

2

2

, 2 , sgn sin

sgn sin ,

,

M M

r l UM

r WM

(4.69)
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Fig. 4.17. Indicator-function 

This transformation fulfils the equations (4.61) during the long contact phases 

automatically. Applying this transformation we can rewrite the equations (4.61) 

(4.66) as follows: 

2 2

2

2 2

, ,
:

, , sin

: 0; 0

2
sin

M t U M t W
t n

M t W M t a t

t n U U

l

a

(4.70)

Relationships (4.70) do not determine a system of ordinary differential equa-

tion. It is something different. It is an infinite sequence of systems of ordinary dif-

ferential equations. Each of them is valid during the time interval 

n t n  because during these time intervals the function 

2 ,M t is equal to 1 or 1. During the next time interval 

1n t n  there are no equations at all because the function 

2 ,M t is equal to zero (the equations are degenerated to an identity). At the 

beginning of the next time interval of the non-degenerate motion the new initial 

conditions must be determined. 

The solution to the system (4.70) is: 

1 cos sgn sin

:
sin

1 : ,  are not defined

W a t t

n t n t
U a t a t

n t n U W

(4.71)

–
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The sign z means here and further the largest integer number smaller than z .

Returning back to the original variables we can write: 

1 1

2

1

sgn sin 1 2 , 2 , sin

,

sgn sin cos 2 ,

r l t M t M t a t

t
l a t M t

r a t t M t

(4.72)

The first term in the equation for r corresponds to the position of the mass dur-

ing contact, i.e. when 1 2 , 0M .

Equations (4.70) are the simplest example of the variable order discontinuous 
system. Within the time intervals where the function 2M  differs from zero it is a 

system of the second order. Within the time intervals where the function 2M  is 

equal to zero we don’t have any differential equation (order zero). The length of 

each time interval is finite and at the beginning of the next time interval the sys-

tem obtains new initial conditions. 

4.3.4 Variable Order Discontinuous Systems in the Standard Form 

An averaging procedure can be developed for the variable order discontinuous 

systems. Let us firstly define the corresponding standard form.  

Consider a system described over certain times by differential equations, and at 

other time intervals by differential and finite relations of the following form: 

0, , , ; 0

, , , ;

2 2 , , 0,1,2,

x X x yM t t x x

yM t Y x yM t t M t

y n G x n n

(4.73)

Here 1 ,M t M t  is a 2 -periodic piecewise-constant function. Vec-

tor x contains the normal slow variables and describes the subsystem of the con-

stant order. The vector-function y  is a solution of an infinite sequence of systems 

of differential equations and describes the discontinuous subsystem of the variable 

order. The equations for y  are valid within the time intervals where the function 

M  is not equal to zero. Where the function M  is equal to zero there are only 

equations for slow continuous variables x . New initial conditions for y  are 

given at the beginning of each interval where y  is defined. These initial condi-
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tions may depend on the values reached by the variables x  to the end of the pre-

vious interval.  

The main idea for the averaging of the system (4.73) is that the variables y are

the “slaves” of the master variables x  (at least in the first order approximation). 

Let us assume that we know 2x n  for some certain n  (for example the initial 

condition for 0n ). Then we also know the corresponding initial condition for 

2 2 ny n G x n G . The equations for y  must be integrated only as 

long as the function M  is not equal to zero. But this interval is asymptotically 

short and the variable y  is slow. So it cannot change significantly during this 

time interval and we can replace it through its initial value or with the same accu-

racy we can write: 

ny G O G x O (4.74)

Substituting (4.74) into the equation for x  we get a system of ordinary differ-

ential equations in the standard form: 

2

0, , , , ; 0x X x G x M t t O x x (4.75)

This system can be averaged directly. Finally the variable y  can be calculated 

according to (4.74). 

In other words, consider the system (4.73) alongside the averaged one 

0

, , , ,

, ; 0

X G M t t

G x
(4.76)

The solutions to these two systems remain asymptotically close to each other 

for the asymptotically long time: 

for 1
x O

t O
yM t M t O M t

(4.77)

The correct mathematical formulation of the corresponding theorem and its 

proof can be found in Appendix VI.  

The switching points of the function M  were constant in the considered case. 

This requirement is not important. The principal estimation (4.77) doesn’t change 

if we replace the function M t  through 1 ,M t  and even if we suppose that 

 is not a constant but it depends on the slow variables (see Appendix VI for the 

corresponding theorem and the proof). 
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4.4. Basic Regime with Long Contacts for the Mass in a 
Resonantly Excited Frame 

4.4.1. Equations of Motion 

The elementary scheme of the resonant impact crasher is shown in Fig.4.18. 

sina

C

M

m
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m

Fig. 4.18. Impact crasher with resonant excitation 

It consists of a frame with a large mass M excited kinematically. Inside of the 

frame there is a free moving striker. Its mass is m . The free length of the frame’s 

interior is 2l . The striker can collide with both sides of the frame. The collisions 

are absolutely inelastic. 

 Let us start with the equations for the time intervals of separate motion of the 

masses. 1x  is the coordinate of the frame, 2x  is the coordinate of the striker. 

1 1

2 1

2

sin 0
,

0

Mx C x a t
x x l

mx
(4.78)

During the contact phase the frame and the striker move together: 

1 1

2 1

2 1

sin 0
,

M m x C x a t
x x l

x x
(4.79)

The contact is possible as long as the contact force remains positive. 

1 2 1sin sgncontact

m
F C x a t x x

M m
(4.80)

It is sensible to introduce the coordinates corresponding to the position of the 

center of mass of the system and to the distance between the frame and the striker: 
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1 2
2 1;

Mx mx
s r x x

M m
(4.81)

The new variables are governed by the following equations (compare (4.30)-

(4.32))

(1 ) (1 ) (1 )sin

sin ,

0,

s s r a

s r a r l
r

r l

(4.82)

These equations must be supplemented by the corresponding conditions for the 

separation of the contact: 

: sin ; 0r l s r a r (4.83)

The following notation used in these equations: 

; ; ; ;
dC m

kt k
M M m k d

(4.84)

Assuming that  and a l  are small parameters of the same order we can lin-

earize equations (4.82) with respect to these parameters: 

sin

sin ,

0,

s s s r a

s r a r l
r

r l

(4.85)

This is the system we are going to analyze. 

4.4.2. Perturbation Analysis. Transformation to the Form Suitable for 

Averaging 

Consider the unperturbed system: 

0 0

0 0

0

0

0

,

0,

s s

s r l
r

r l

(4.86)

The general solution to the first equation is obvious: 
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0 0 0 0 0sin ; ;s A A const const (4.87)

Substituting this solution into the second equation we obtain the system which 

was analyzed in section 4.3.3. 

0 0 0

0

0

sin ,

0,

A r l
r

r l
(4.88)

The corresponding solution is known, so we can use it as the variable transfor-

mation in order to obtain a system suitable for averaging: 

1

1 1

2

sin ; cos ;

sgn sin cos 2 ,

sgn sin 1 2 , 2 , sin

,

s A s A

r B A M

r l M M A

l B M

(4.89)

The transformation (4.89) is based on the solution (4.72). The newly introduced 

variable B  has the sense of the velocity of the striker when it looses the contact 

with the frame. Parameter  determines the time of the next collision: 

:
sin 2

collisiont
B A l

(4.90)

This transformation must be applied both to the equations (4.85) and the condi-

tions for the separation of the contact (4.83). The new set of variables is governed 

by the following equations: 

2

1 1

1 1

1

sin cos cos sin cos

1 sin sin sin sin

2 , sin 2 , sgn sin

2 , 2 ,

sin sgn sin 2 ,

A A r a

r a

A A

B M A M

M M

A
M

B

(4.91)
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2 ;n B A O n O (4.92)

Let us investigate the main resonance. This means that we, as usual, assume 

that the excitation’s frequency is close to the natural frequency of the frame and 

introduce the corresponding phase difference: 

1 1; (4.93)

Finally we obtain: 

2

1 1

1 1

1

2

sin cos cos sin cos

sin sin sin sin

2 , sin 2 , sgn sin

2 , 2 ,

sin sgn sin 2 ,

1 sin sin sin sin

A A r a

r a

A A

B M A M

M M

A
M

B

r a

A A

(4.94)

The system (4.94),  (4.92) contains two slow master variables A  and , one 

fast rotating phase  and two slave variables B  and . The fact that the slave 

variable  is fast is not really important, because its velocity is close to one. It 

means the variable 1 2 ,M  is slow in its definition area. The aver-

aging procedure described in the section 4.3.4 can be applied here. 

4.4.3. Equations of the First Order Approximation. Discussion of the 

Results 

 Averaging the system (4.94), (4.92) over the fast phase we obtain the equations 

of the first order approximation. 
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4 1

1 1

1 1

1 1 1 1

1
1 1

1 1 1 1 1 1

1

sin
1 4 2

sin
2 sin

sin cos
2 4

1
sin sin 2

2 2

2
sin ; ;

l
A a

a

l

l
B A

A

(4.95)

Index 1 indicates here as usual the first order approximation.  

The first three equations govern the motion of the mass point of the system (the 

frame). Setting the right hand sides in the first two equations to zero and consider-

ing the result together with the third equation we obtain a system of transcendental 

equations describing the stationary resonant regime. Figure 4.19 shows the reso-

nant curve. The simulations were performed for 0.1; 0.2; 0.5a l l
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Fig. 4.19. Resonant amplitude as a function of the frequency delay; the solid line corre-

sponds to the analytic prediction; the dots show the results of numeric simulations 

The obtained solution corresponds to the simplest regime with one collision at 

each side of the frame per one oscillation period. Mathematically it means that the 

following condition must be fulfilled: 

10 (4.96)

The case 1  corresponds to the transition from the regime with long con-

tacts to the regime with short contacts. This condition limits the acceptable fre-

quency delay: 

’

....
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4 4

a a

l l
(4.97)

The case 1 0 corresponds to exact resonance: 2 . It is interesting 

to point out that the dissipative influence of the inelastic impacts decreases in the 

vicinity of the resonance and the stationary amplitude at the exact resonance is in-

finite. This strange result becomes clear if we notice that at the exact resonance 

the striker flies from one side of the frame to another one in a very short time. It 

reaches the other side with a velocity the same as its own. So their relative veloc-

ity at the moment of the collision is very small and so is the lost energy. Conse-

quently inelastic collisions can’t limit the amplitude at the resonance. It is interest-

ing to calculate the impact intensity which is the most important characteristic 

from the technological point of view. The relative velocity at the moment of colli-

sion is the sensible measure for the intensity. According to the obtained solution it 

can be calculated in the non-dimensional form as follows (see also Fig. 4.20): 

1 1
1

1 1

1 cos
1 cos

2 sin

A
I

l
(4.98)
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Fig. 4.20. Impact intensity over frequency delay 

Another important point which has to be discussed is the sense of the first order 

approximation (4.95) compared to the unperturbed problem considered in the sec-

tion 4.3.3. The last two equations obtained for the “slave variables” in (4.95) show 

that the motion of the striker doesn’t differ from the particular solution for the un-

perturbed system. This means that actually we could replace the slave degrees of 

freedom through the corresponding enforced solution from the very beginning. 

Then the whole analysis would deal with the resonant motions of the “continuous” 

....

’
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subsystem taking the relative motions of the strike into account in the small per-

turbation terms on the right hand sides of the equations. 

From that point of view we have here the same situation as in the strongly 

damped linear system considered at the beginning of this chapter. The degrees of 

freedom connected with the slave variables can be neglected and replaced through 

the corresponding particular solutions (depending on the motion of the master 

subsystem). Then the master subsystem can be averaged and the result can be sub-

stituted in the equations for the “slave” variables. 

Using this approach one neglects the initial transient motions (until the first 

long contact) in the “slave” subsystem. The slow transient motions in the master 

system however can be investigated using the averaged master equations. 

This approach is illustrated in the next section. 

4.5. The Basic Regime with Long Contacts for the Mass 
over the Resonantly Excited Base 

4.5.1. Equations of Motion 

The elementary scheme of the resonant impact crasher is shown in Fig.4.21. 
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Fig. 4.21. Vibrating screen with resonant excitation 

It consists of a base with a large mass M excited kinematically. A free mass  

m  moves above the base in the gravity field g . The free mass can collide with 

the oscillating base. The collisions are absolutely inelastic. 

 Let us start with the equations for the time intervals of separate motion of the 
masses. 1x  is the coordinate of the base, 2x  is the coordinate of the free mass. 
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1 1 1

2 1

2

cos sin
,

Mx b x a t C x a t Mg
x x

mx mg
(4.99)

During the contact phase the base and the layer move together: 

1 1 1

2 1

2 1

cos sin

,

M m x b x a t C x a t

x xM m g

x x

(4.100)

The contact is possible as long as the contact force remains positive. 

1 1cos sincontact

bm Cm
F x a t x a t

M m M m
(4.101)

It is sensible to introduce the coordinates corresponding to the position of the 

center of mass of the system and to the distance between the free mass and the 

base:

1 2
2 1;

Mx mx
s r x x

M m
(4.102)

The new variables are governed by the following equations: 

(1 ) sin

2 (1 ) cos

sin 2 cos , 0

0, 0

s s r a

s r a p

s r a s r a r
r

r

(4.103)

These equations must be supplemented by the corresponding conditions for the 

separation of the contact: 

0 : sin 2 cos ; 0r s a s a r (4.104)

The following notation is used in these equations: 

2
; ; ; ; ;

2

C m g b
kt k p

M M m k k CM

d

d

(4.105)
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We assume ,  and a p to be small parameters of the same order, neglect 

the second order small terms with respect to these parameters in the equations and 

the first order small terms in the separation conditions. Besides that we eliminate 

the static displacement introducing the new variable  

s z p (4.106)

Finally we obtain the equations which have to be analyzed: 

2 sin

sin 2 , 0

0, 0

z z z p r z a

z p r a z r
r

r

(4.107)

The separation conditions must be considered alongside the equations (4.107): 

0 : ; 0r z p r (4.108)

4.5.2. The Master and the Slave Variables; the Unperturbed Solution 

Consider the unperturbed system: 

0 0

0 0

0

0

0 0 0

0

, 0

0, 0

0 : , 0

z z

z p r
r

r

r z p r

(4.109)

The first equation here describes the master variable. The second one together 

with the separation condition (the last line in the equations (4.109)) describes the 

slave variable. Our objective now is to build the unperturbed solution with long 

contacts for the slave variable. The analysis is limited to the basic regime with one 

collision per one oscillation’s period of the base. 

The master motion is obvious: 

0 0sin ; cos ; ;z A z A A const const (4.110)

In order to obtain the slave solution we have to investigate the free motion 

0 0r only. It has to satisfy the initial conditions given in the last line of the sys-

tem (4.109). The result is: 
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0 0 0 0

0 0 0 0

2

0 0

0

, cos cos sin

, sin sin cos

1
sin

2

arcsin

r A A A

r A A A

A

p

A

(4.111)

This solution exists only if A p . Otherwise the mass wouldn’t loose the 

contact with the base. Solution (4.111) is valid as long as 0r  is positive. This in-

terval can be determined as follows: 

0 0

0

2

0 0 0 0 0

2 ;

0

1
sin cos sin sin

2

r
(4.112)

 is the first solution of the equation (4.112) in the considered interval. 

The function 0r  is equal to zero in the interval 0 2 . Then it re-

peats periodically. One period of this function is shown in Fig. 4.22. 

0r0r

Fig. 4.22. The slave variable 0r

This solution can be used now in order to investigate the resonance of the mas-

ter subsystem. We can simply replace the slave variable r  in the first equation 

(4.107) through the function 0r  and perform the perturbation analysis as usual. 

We consider (4.110) as a transformation. The new variables are governed by the 

following equations: 
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2

0

0

sin cos 2 cos sin cos

1 sin sin sin 2 sin sin

A A p r A a

a
A p r

A A
(4.113)

The frequency delay and the phase difference have to be introduced in order to 

investigate the main resonance: 

1; (4.114)

Finally we arrive at the equations which can be averaged: 

2

0

0

0

sin cos 2 cos

sin cos

sin sin sin 2

sin sin

1 sin sin sin 2

sin sin

A A p r A

a

A A p r

A

A A p r

a A

(4.115)

4.5.3. Equations of the First Order Approximation. Discussion of the 

Results 

Equations of the first order approximation can be obtained by direct averaging of 

the equations (4.115). The result is: 

1 1 1 0

1 1 0

1 1

1
sin cos

2

cos sin
2 2

A a A r

a
r

A A

(4.116)

It is not very difficult to calculate the averages representing the influence of the 

slave subsystem on the master one. 
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0

0 0 1

21
0 0 0 0

2

0 0

1
cos , cos

2

1
sin sin sin

2 2

1
sin sin cos 1

2

r r A d

A
(4.117)

0

0 0 1

21
0 0 0 0

0 0 0 0

1
sin , sin

2

1
cos sin 2sin cos cos

2 2

1 1
cos sin 2 sin 2

2 2

r r A d

A
(4.118)

Setting the right hand sides of the equations (4.116) to zero we obtain a system 

of transcendental equations governing the stationary resonant regime. This system 

can be reduced to the following equation for the amplitude: 

2 2
2

1 0 1 0cos sin
2 4

a
A r A r (4.119)

Let us investigate which conditions are necessary for the existence of the con-

sidered regime. The first one was already mentioned. It guarantees that the ampli-

tude of the base is sufficiently large to allow the separation of the free mass: 

1A p (4.120)

The second one makes the long contact possible (see Fig. 4.23): 

0 (4.121)

The last condition ensures that there is one long contact in each oscillation’s pe-

riod:

02 (4.122)

The boundary of the inequality (4.120) means the solution with permanent con-

tact, i.e. 
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0
2

2

0

2
2

a
r A p

(4.123)

This condition determines the lowest possible amplitude of the excitation: 

2 2

1

2 2

a

p
(4.124)

0

02

Separation line

0

02

Separation lineSeparation line

Fig. 4.23. The necessary conditions for the existence of the basic regime 

The inequality (4.122) can also be easily solved. It corresponds to the oscilla-

tion’s amplitude, which can be calculated from (4.112): 

2

1 1A p (4.125)

It is the maximal possible amplitude for the regime with collisions in each os-

cillation’s period. The corresponding condition determines the maximal possible 

amplitude of the excitation: 

22 2
2

2 2

1 1
1

2 1 2 1

a

p
(4.126)
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The following transcendental equation must be solved in order to determine the 

boundary corresponding to the inequality (4.121): 

0 0cos
2

(4.127)

It can be easily done numerically. This boundary also limits the excitation’s 

amplitude from the bottom. An example of the existence area is shown in Fig. 

4.24. 
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Fig. 4.24. The existence area for the investigated regime with one collision per oscillation’s 

period

4.6. Conclusions 

Each of the systems considered in this chapter can be split in two qualitatively dif-

ferent weakly coupled subsystems. The first one is weakly damped, i.e. it is almost 

conservative. This subsystem can be described as the “master subsystem”. The 

second one is damped strongly and is called the “slave subsystem”. The slave sub-

system doesn’t have its own dynamics. It is determined to some degree through 

the motions of the master subsystem.  

The suggested approach uses this peculiarity. The analysis can be split into three 

steps. Firstly the general solution to the unperturbed master subsystem has to be 

found. The corresponding particular solution to the slave subsystem must be found 



www.manaraa.com

4.6. Conclusions      179 

secondly. Finally this solution can be used in the perturbation analysis for the mas-

ter system in order to determine the “arbitrary constants” of the general solution. 

Two types of strongly damped subsystems were investigated. The approximate 

results are valid in the case of the strong linear damping after a finite time interval 

corresponding to transient motions in the strongly damped subsystem.  

The situation is more complex for systems with inelastic collisions. Different 

types of particular solutions are possible here, depending on the parameters of 

master motions. The described approach is effective if the analysis can be sensibly 

limited to a particular regime in the dissipative subsystem (for example to fix the 

number and type of collisions in each oscillation’s period of the master subsys-

tem). This is possible in many practical cases dealing with stationary working vi-

brating machines. 

The performed analysis can be used not only in order to investigate the periodic 

regimes. It is also useful in analyzing of slow transient processes in the master 

subsystem as long as the chosen regime of the slave subsystem remains unaltered. 

The same ideas can be very effective in the analysis of stick-slip oscillations in 

systems with dry friction. Sticking belongs to the same type of discontinuity as the 

inelastic impacts do. The degrees of freedom corresponding to the relative motion 

between the sticking objects can be considered as the slave ones. The correspond-

ing examples don’t require any additional ideas and don’t contribute significantly 

to better understanding of the effects or methods.  
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Resonance

Significantly nonlinear resonance is an extremely wide, important and complex 

research field both from practical and theoretical point of view. We have already 

seen an example of the nonlinear resonance in Chapter 3 as we have analyzed the 

harmonically excited oscillator in a clearance. But it is not the most important ex-

ample. We would like to distinguish between the almost linear resonances, which 

were often investigated above, and the significantly nonlinear resonance (or sim-

ply “nonlinear resonance”), which is the object of our interest in this chapter. 

The nonlinear resonance occurs always, when the frequency of excitation can-

not be considered as a constant, but it depends on the motion of the excited sys-

tem. This is the case in all applications, where the power of the exciter is compa-

rable with the energy demand of the machine, i.e. all real machines otherwise their 

drive would be too powerful and expensive. So the practical importance of the 

nonlinear resonance can be hardly overestimated. 

Nonlinear resonance is an extremely complex field from the theoretical point of 

view. It attracts attention of many different specialists both in mathematics and 

mechanics for at least 50 years [7, 8, 31, 44, 61, 82 – 84, 86, 87, 113, 114, 138, 

139]. Unfortunately mathematical problems in this area are so complex, that a 

complete theory of the nonlinear resonance still doesn’t exist. The main point in 

the analysis is the applicability of asymptotic expansions for a long time interval 

1O , despite the natural time scale and the corresponding small parameter is 

.

Two types of problems are interesting both from practical and theoretical points 

of view. The first one is the so called passage through the resonance. This problem 

is general for all machines operating in the overcritical area, i.e. with rotation fre-

quencies higher that the first natural frequency of the oscillating mechanical sub-

system. The name “passage through the resonance” itself implies that there should 

be another possibility. The alternative is called “locking into the resonance” and 

can be easily explained if we consider the so called “Sommerfeld’s effect”, which 

was described firstly by A. Sommerfeld in 1902 and explained by I.Blekhman [17, 

20] 50 years later. Actually it was Blekhman, who has introduced the name “Som-

merfeld’s effect” in 1953. 

Consider the system in Fig. 5.1. It consists of an unbalanced rotor mounted on a 

simple linear oscillating system. In the simplest case the system (the base) has 

only one degree of freedom. The rotor is driven by a motor with limited power, for 
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example by an induction motor. Let us increase the applied torque monotonously. 

The objective is to increase the rotation speed of the rotor. If the base is rigid and 

fixed, it would be the case. But in the situation under consideration the base has 

one degree of freedom and the corresponding natural frequency. In this situation 

the rotation speed of the rotor will increase until it reaches the vicinity of the natu-

ral frequency of the base. If we continue to increase the applied torque the follow-

ing phenomenon can be observed. The rotation speed jumps to the natural fre-

quency of the oscillating system (actually it jumps above this frequency and then 

after some oscillations stabilizes at the resonance level). The further increase of 

the rotation speed is going on very slowly (or completely stops), even though the 

supplied power grows. Instead of that the oscillations of the base increase dra-

matically. The system remains for a long time in the resonance area. At a certain 

level of the supplied power the oscillations’ amplitude falls down abruptly and the 

rotation speed jumps to a certain post resonant value.  

Fig.5.1. An example of the “Sommerfeld’s effect” 

The described scenario (cf. Fig. 5.2) means that the system finally passes 

through the resonance. If the supplied power is not sufficient, the system can even 

remain in the resonance area, i.e. it can be locked by the resonance. This situation 

can be dangerous for any machine if it is not designed for operating in the reso-

nance. Thus the locking into resonance or too slow passing through the resonance 

should be avoided. 

If we decrease the applied torque and the desired rotation speed from some 

overcritical level, the effect is even stronger. So to stop a machine may be more 

dangerous than to start it. The start up and slow down of the induction motor 

mounted on the system with one degree of freedom is shown in Fig. 5.3 (the simu-

lations were performed here with the higher damping in comparison to the simula-

tions shown in the Fig. 5.2). 

The second kind of problems connected with the nonlinear resonance is just the 

opposite of the first one. For many machines using vibrations for technological 

purposes operating in the resonance can be desired. Than the problem occurs how 

to bring a machine to the stable resonance or how to choose the control strategy in 

order to create a stable and robust resonant regime. 
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In this chapter we are not going to discuss the whole variety of mathematical 

and technical problems connected with the nonlinear resonance. It would blow up 

the limits of this book. We will only briefly discuss one approach useful for the 

analysis of the desired resonance and illustrate it by two examples from ore proc-

essing industry (resonant crushers). Our objective is not to give a complete solu-

tion for any particular problem, but to introduce an approach, which is unfortu-

nately less known in mechanical engineering (even though it is well known among 

the mathematicians).  
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Fig. 5.2. Induction motor passing through the resonance; the figure on the top shows the ro-

tor’s speed, the thin line corresponds to the expected velocity of the rotor, the thick line 

displays its real velocity; the figure at the bottom shows oscillations of the base; all the 

units are non-dimensional and correspond to the equations (5.1); one can easily notice a 

significant deviation between the required and achieved rotation speedy coinciding with the 

strong oscillations of the base 
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Fig. 5.3. Start up and slow down of an induction motor; the thin line displays the required 

rotation speed, the thick line shows the really achieved rotation speed; one can notice that 

the nonlinear behavior is much stronger during the deceleration of the rotor 

5.1 The Basic Example of the Nonlinear Resonance 

5.1.1 Elementary Analysis and Natural Scale for the Resonance 

Domain

The unbalanced machine shown in Fig. 5.1 can be considered as the elementary 

basic system for studying the nonlinear resonance. Its equations of motion in the 

undimensioned form are as follows (cf. [20]): 

2sin cos

sin

x x x

u v kx
(5.1)

Here x  is the coordinate of the base,  is the angle of rotation of the rotor, 

is the small parameter proportional to the eccentricity of the rotor and k  is a coef-

ficient depending on the inertial properties of the system. The term x  describes 

the small linear damping in the spring. The term u v  is the simplest possible 

description of the induction motor. It takes into account that the motor torque de-

.

.
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creases with increasing rotation speed; 0 u v  is the synchronous angular ve-

locity of the rotor, u  is the static torque, v  is the slope of the motor characteris-

tics.

We assume that , ,u  and v  are the small parameters of the same order, 

1k O . IN comparison to [20] we neglect the gravity forces acting on the un-

balanced rotor. 

The equations (5.1) can be easily solved with respect to the highest derivatives 

(we neglect the terms o ):

2 cos

sin

x x x

u v kx
(5.2)

The corresponding unperturbed system is 

0 0

0

0

0

x x
(5.3)

Its general solution can be used as the transformation: 

sin , cosx A x A
(5.4)

Applying (5.4) to (5.2) we obtain: 

2 2

2

cos cos cos

sin sin

1 sin cos sin cos

A A

u v kA

A

(5.5)

This system has the characteristic form for the nonlinear resonant problems. It 

has two slow variables A  and , and two fast rotating phases  and  (all the 

right hand sides of our equations depend periodically on these variables). If 

would be constant the situation would be simple. The only possible resonance 

would correspond to  

1res (5.6)

We could introduce the frequency delay 1 as the new small parameter, the 

phase difference  as the new variable and investigate the solutions in the 
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-vicinity of the resonance after averaging of all the equations with respect to the 

only fast rotating phase .

Unfortunately, the rotation speed of the rotor is not constant in our case. It is 

one of the unknown functions. The same statement is valid for the frequency delay 

1.

The natural approach transforming (5.5) to the standard form in the vicinity of 

the resonance (5.6) is based on the idea, that the resonance domain is mach larger 

in the nonlinear case than in the  almost linear case. Let us introduce the frequency 

delay and the phase difference as follows: 

1
, (5.7)

The last assumption means that we are going to investigate solutions to our sys-

tem in the -vicinity of the resonance (which is actually much larger that the 

-vicinity normally analyzed in the quasi-linear case). 

The new variables are governed by the following equations (here we as usual 

neglect all the terms o ):

2cos cos cos

sin sin

sin cos sin cos

1 sin cos sin cos

A A

u v
kA v

A

A

(5.8)

Notice that the coefficient u v  has the magnitude order O , so 

we can denote 0u v u .

This system now has one slow variable :A A O , two semi-slow vari-

ables : , :O O  and one fast rotating phase . It is a system 

in the standard form for averaging but with the small parameter  instead of 

. It can be averaged with respect to  and the result is sufficient for the analy-

sis of the stationary solutions (singular points).  
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The price we have paid for this result is not small. The averaged equations to 

(5.8) are valid on the time scale 
1

O , which is much shorter than in the 

quasi-linear case. We will see that this time scale is too short for the investigation 

of transient processes in the vicinity of the nonlinear resonance! 

The result of the averaging of the equations (5.8) is as follows (we use the sec-

ond order approximation with respect to the new small parameter , which has 

the accuracyO ):

2 2 2

2 0 2 2 2

2 2 2

2

1 1
cos

2 2

1
cos

2

sin
2

A A

u kA v

A

(5.9)

The subscript 2 denotes here the averaged variables in the second order ap-

proximation. In order to analyze this system let us consider the first order ap-

proximation (we neglect the terms o ):

1

1 0 1 1

1 1

0

1
cos

2

A

u kA (5.10)

The amplitude 1A  remains constant according to the first equation. The second 

and the third equations together describe the so called “equivalent pendulum”.

1 1 1 0

1
cos

2
kA u (5.11)

5.1.2 The Basic Regimes of the Equivalent Pendulum 

The equation (5.11) describes a mathematical pendulum with an applied con-

stant torque. We have already seen this equation in section 3.6. The small formal 

difference can be eliminated if we change the zero of the phase difference :
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1 1

1 1 1 0

2

1
sin

2
kA u

(5.12)

The phase portrait of the equivalent pendulum for the case 1 02kA u  is 

shown in Fig. 5.4. 

The first and very important property of the system (5.12) is its conservative-

ness. It is the general property of the first order approximation to all systems with 

two rotating phases in the vicinity of a simple nonlinear resonance.  

The term 1
12
sinkA  is usually called “the vibrational torque”. Its relation to 

the “external torque” 0u  determines the basic properties of the equivalent pen-

dulum. Two types of motion are possible for the pendulum depending on the pa-

rameter values and its initial energy: rotation and oscillations. Only rotation is 

possible if the external torque is sufficient large: 

0 1 2u kA (5.13)

The stationary resonance is impossible in that case. So the resonance is not at-

tracting and the system leaves its vicinity on its natural time scale t O .

The situation changes, if the external torque is small, i.e. 

0 1 2u kA (5.14)

Fig. 5.4. The phase portrait of the equivalent resonant pendulum; the homoclinic loop 

(thick line) limits the attraction area of the stationary solution (according to the first order 

approximation). 
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Then the closed loop going through the saddle point exists. It separates the area 

of oscillations (inside of the loop) from the area of rotations (outside of the loop). 

The type of motion depends on the initial conditions, especially on the energy of 

the equivalent pendulum. The total energy of the pendulum can be obtained as the 

first integral to the equation (5.12): 

21 1
1 1 1 0 12 2

cosE kA u (5.15)

The first term here is the kinetic energy KE , the second and the third terms 

correspond to the potential energy PE  of the equivalent pendulum (see Fig. 5.5). 

1

1PE

1

1PE

Fig. 5.5. Potential energy of the equivalent pendulum 

If the initial energy of the pendulum is between the maximum and the mini-

mum of one potential well, then the pendulum oscillates in it. If the initial energy 

is larger than the maximum the pendulum rotates with increasing speed. 

Unfortunately the system of the first order approximation is conservative. It 

means we cannot conclude anything about the stability of the resonant solutions 

on its basis. The second order approximation however gives us sufficient informa-

tion in order to investigate the stationary resonant regime. 

5.1.3 Stability of the Stationary Resonance 

The stability investigation based on the system (5.9) can be performed for the sta-

tionary resonant solutions. Let us convert to variable 
2

 in the equations 

(5.9):
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2 2 2

2 0 2 2 2

2 2 2

2

1 1
sin

2 2

1
sin

2

cos
2

A A

u kA v

A

(5.16)

The stationary resonance satisfies the following equations: 

20 20

0

0 0
20 20

20 20

20 20

20

1
sin

2 2
sin

cos
2

A

u v

kA kA

A

(5.17)

Here we have introduced the following notation: 0 0, v v  in order 

to compare the magnitude orders explicitly.  

It follows from the last equation in (5.17) that 20 0O . Hence 

0
20

20

2
sin

u
O

kA
. Substituting this relationship into the first equation 

we obtain the stationary amplitude of the resonator (here we neglect the small 

terms): 

0
20

0

2u
A

k
(5.18)

Two different stationary regimes of the equivalent pendulum can correspond to 

this amplitude: 

0
20

20

1 20 0 0 0
20 20

2
sin

2 2
arcsin ; arcsin

u

kA

u u

k k

(5.19)
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Referring back to the relationship for the potential energy of the equivalent 

pendulum one can easily notice that its minimum corresponds to the stationary so-

lution with 20cos 0  and its maximum corresponds to the solution with 

20cos 0 . Thus the first solution is obviously unstable and only the second 

one can be stable.  

In order to investigate the stability of the second solution let us write the equa-

tions in variations: 

2 20 2 20 2 20

20

20 20 20

20 202

20 20

; ;

1 1
cos

2 2

1 1
sin cos

2 2

sin cos
2 2

A A A

A A

k A kA v

A
A A

(5.20)

The corresponding characteristic equation for the eigenvalues  is: 

20

20 202

20 20

20 20 20

1 1
cos 0

2 2

cos sin 0
2 2

1 1
sin cos

2 2

A A

k kA v

(5.21)

This equation is a polynomial of the third order with respect to :

3 2

0 0

2 2
2 2 2 0

20 20 20 0 02

20

3 2
2 0 0

20 20

1 1
cos cos

2 4 4

1
cos sin 0

4 4

v

kA v
A

v
k

(5.22)

Here the relationships (5.17) were taken into account. The terms 
2O  in the 

third term and 
3O  can be neglected. This simplifies our equation: 
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3 2 2

0 0 20 20 0 20 20

1
cos cos 0

2 4

k
v A k A (5.23)

 The Hurwitz’ criterion for the asymptotic stability (the sufficient condition that 

all the eigenvalues have negative real parts) is: 

20

2
2

0 0 20 20 0 20 20

cos 0

1
cos cos

2 4

k
v A k A

(5.24)

The first inequality is already known. It means that only the equilibrium posi-

tion corresponding to the minimum of the potential energy can be stable. The sec-

ond one is fulfilled automatically because it can be transformed as follows: 

0 0

1
0

2
v (5.25)

Both terms in (5.25) are positive due to their physical sense:  is the damping 

in the mechanical part of the system and “ v ” is the negative slope of the mo-

tor’s torque. 

Thus the equilibrium point 
2

20 20 20, , 0A  is stable. 

Notice that this result is based on the second order approximation with respect 

to the natural small parameter . The first order approximation was not suffi-

cient to solve the stability problem. 

The basic necessary condition for the existence of the resonance is based on the 

inequality (5.19): 

20 0 0 02 2A u k u k (5.26)

5.1.4 Resonant Motions: Averaging with Respect to the Oscillations 

of the Equivalent Pendulum  

(This section contains advanced approaches and can be omitted by readers, 
who are not interested in the special problems of the nonlinear resonance.) 

We have seen in the previous section that the damping of the equivalent pendu-

lum is very small. It is sensible to investigate its behavior carefully in such a situa-

tion. Unfortunately the averaged equations (5.16) are valid for the time interval 

1O , which is too short for analyzing of the transient processes in the sys-

tem. The amplitude of the resonant oscillations increases with the rate O .
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Thus on the natural resonant time scale it cannot change sufficiently in order to 

achieve considerable values: 1O O O . What we really need 

in order to investigate the transient solution (and from the practical point of view 

in order to control them) is an approximation which would be valid on the time 

scale 1O .

Careful analysis shows that the source of the increasing inaccuracy of our ap-

proximation is not the amplitude of the mass or the amplitude of the equivalent 

pendulum, but it is its phase. This result together with the fact that the equivalent 

pendulum oscillates in the resonance domain, explains the idea to average the 

equations (5.16) with respect to the phase of the equivalent pendulum’s oscilla-

tions. This operation is possible because the “unperturbed system” (5.12) is con-

servative, it can be integrated and its integrals can be considered as the new vari-

ables for the full system (5.16). However the technical problems are considerable, 

because the corresponding transformation cannot be performed using elementary 

or even widely known special functions. We are going to perform the analysis ap-

plying a transformation, which was suggested by A. Pechenv [87], who also 

proved that the final twice averaged system is valid on the required sufficient long 

time interval [86]. This proof can be found in the Appendix VII. 

It is convenient to choose the zero of the potential energy in the stable equilib-

rium of the equivalent pendulum for particular amplitude 2A :

2 2 0 2

2

2

0 0

2 2

1
cos cos

2

1

2

2 2
arcsin , sin , cos 0

P

K

E kA u

E

u u

kA kA

(5.27)

Now we can introduce new variables g  and , replacing the variables  and 

:

2 2

2 2 0 2

2 * 2

1 1
cos cos cos

2 2

sin ; sgn cos sgn

g kA u

g

(5.28)

Notice that *  is not a constant. It depends on the variable 2A . The variable 
2g  describes the full energy of the pendulum according to the first order ap-

proximation (cf. Fig. 5.6).  
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This transformation enables to express the old variables uniquely in terms of 

the new ones, but it does not permit analytic solutions of the transcendental equa-

tion for 2  as the reciprocal to (5.28) in elementary functions. It is assumed be-

low that 2  is expressed in terms of the variables 2 , ,A g .

2

21
cos

2
g

2

21
cos

2
g

Fig. 5.6. Potential energy of the equivalent pendulum in the new variables 

The new variables are governed by the following equations (we neglect the 

terms O  in the equation for ):

2 0 2 2

2

0 2 2 *

2 0 2 2 *

2 *
2

1 1
sin

2 2

sin cos sin sin
4

sin 2 cos cos
4

sin sin1

2 cos

A A

k
g v g

g

k
A

g

kA
g

(5.29)

Here we suppose that the variable 2  is expressed in terms of the new vari-

ables according to the transformation (5.28). Unfortunately it cannot be done in 

elementary functions in a closed form. Let us show that  is a bounded function. 

The only zero of the function cosg  corresponds to the point 2 *  (cf. Fig. 

5.6). In the vicinity of this point we can solve the equations (5.28) taking the quad-

ratic terms in the corresponding Taylor’s expansion into account: 

2
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1
* 2 *2

cos cosg (5.30)

Applying this relationship we obtain the following estimations: 

2 * *

1cos 0
*2

2 * *

1cos 0
*2

sin sin cos
lim 0

cos cos

cos cos sin
lim

cos cos

g

g

g

g

(5.31)

Thus the right hand side of the equation for  remains always positive and 

bounded (cf. Fig. 5.7). 

2

2 2cosg

cosg

2 *sin sin

cosg

2

2 2cosg

cosg

2 *sin sin

cosg

Fig. 5.7. The right hand side of the equation for  is bounded and positive in the area of 

oscillations of the equivalent pendulum; it becomes zero if we approach to the maximum of 

the potential energy 

The variable  can be interpreted as a rotating phase, which velocity has the 

magnitude orderO . We can convert to it as the independent variable: 
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02 2

2 * 2 2 *

2 2

0
2

2 2 * 2

2 *
2 0 2

2 2 *

sin coscos 1

sin sin sin sin

2 sin cos 1
cos cos

sin sin 2

cos cos
sin 2 cos

2 sin sin

dA gg

d k kA

v gdg

d kA A

k
A

A

(5.32)

This system is in the standard form for averaging. The small parameter is .

After averaging with respect to the “semi-slow motions” in the resonance domain 

the system can be represented in the plane of two variables 2A  and 
2g . Unfortu-

nately no results are available in the closed form. A typical attraction area of the 

stationary resonance is shown in Fig. 5.8 (cf. [87]). 

Fig. 5.8. The plane of the averaged variables 2A  and 
2g  for sufficiently large negative 

slope of the engine’s characteristics 

One can find there the stable equilibrium point 
2

2 200,g A A  and the lim-

iting curve corresponding to the closed homoclinic loop in Fig. 5.4. All the solu-

tions under the limiting curve converge to the stable stationary solution. If the 

slope of the motor’s characteristics is small, then a part of the area right from the 

stationary amplitude must be excluded from the attraction area.  
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These particular results illustrate the possibility to investigate the attraction area 

of the nonlinear resonance. Much more interesting is the general fact concerning 

the validity of the twice averaged equations. 

 It can be shown that the equations (5.32) averaged with respect to the 

semi-slow phase are valid with the accuracy of O for the long time 

interval
1t O

The phase  after averaging can be estimated very inaccurately with a large 

mistake 1O . These results based on the so called hierarchical averaging of sys-

tems containing slow, semi-slow and fast variables give mathematical foundation 

for analyzing of the nonlinear resonance. 

5.2 Nonlinear Resonant Crusher with Almost Elastic 
Collisions

5.2.1 Problem Description. Equations of Motion 

Consider the system shown in Fig. 5.9. It consists of a frame of mass 1M  in 

whose interior a striker of mass m  is attached elastically. The striker can collide 

almost elastically with the frame at a relative distance f  from the static equilib-

rium point. An inertial vibrator characterized by the mass rm  and radius  is 

placed on the frame and set in rotation by an induction motor. The analysis below 

is confined to linear approximation of the torque at the motor’s shaft: 

, 0, 0P U V U V (5.33)

Fig. 5.9. Resonant crusher with almost elastic collisions 
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The kinetic and potential energies of the system together with the dissipative 

function can be written as follows: 

2 2 2 21 1 1
1 1 12 2 2

2 21 1
2 2

sin

;

r rT Mx mx q mq m m x

cq W bq
(5.34)

Here 1x  is the co-ordinate of the frame, 2 1x x q  is the mass of the striker, 

c  and b  are the stiffness and the damping of the spring correspondingly, 

1 rM M m m  is the total mass of the system. 

Now the equations of motion between the collisions and the kinematical condi-

tions describing collisions must be formulated. For the time intervals between the 

collisions one obtains: 

2

1

1

2

1

sin cos 0

0 , if

sin

r

f

r r

Mx mq m

mx mq bq cq q

m m x U V

(5.35)

Now the kinematical conditions for the collisions have to be formulated. The 

main peculiarity of the system is that the rotor is placed on the colliding frame. It 

means that not only the velocities of the colliding bodies, but also the rotor’s an-

gular velocity is discontinuous at the time point of the collision. The collisions 

take place when fq .

The collisions are described conventionally by the generalized impulse 

conservation law accomplished by the Newton’s impact law (cf. Chapter 1): 

1 1

1 1

;
T T T T

p p p p
x x

q Rq

(5.36)

These conditions can be formulated explicitly as follows: 

1 1 2

2

sin

sin
, if

sin

(1 )

r

f

r

m q q
x x

M m

m q q
q

M m

q q R q

(5.37)
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Equations (5.35) and (5.37) describe motion of the system under consideration 

completely. It is sensible now to eliminate the variable 1x , to convert to undimen-

sionedl variables and to introduce small parameters.  

2 2 2 2

, , ,

, , , , ,

rmc M bM m
k

m M m km M m M m M

dU V q
u v y kt

m k m k d

(5.38)

Now the equations (5.35) and the impact conditions (5.37) can be rewritten as 

follows:

2

2

2

1 sin cos

sin cos
,

sin 1 1

sin cos

y y y

u v
y

y y
(5.39)

2

1

sin 1 ,

1 1 sin

y y R y

R y
y

(5.40)

We suppose now , , , , 1 , ,R u v  to be small parameters of the same 

order and omit the terms o :

2

2

cos
,

sin cos sin

1
,

cos 1

y y y
y

u v y

y y R y
y

R y

(5.41)

System (5.41) shows that both variables y  and  are discontinuous. But the 

arts of the discontinuity of these variables are significantly different. The jump of 

the variable y  is large. The discontinuity of the variable  is on the contrary 

small. Due to this circumstance different methods can be applied for the averaging 

of these discontinuities. Variable  can be averaged “directly”. Variable y  must 
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be regularized by means of the discontinuous unfolding transformation, which was 

discussed in Chapter 3.  

5.2.2 The Unfolding Transformation. The Main Resonance 

In order to regularize the variable y  the following unfolding variable transforma-

tion can be applied: 

y z (5.42)

The new variable z contains only small discontinuities: 

2

2

sgn cos sgn

1 , if  0

sin cos sin

1 sin , if  0

z z z z z

z z R z z

u v z

R z z

(5.43)

In order to obtain a system in standard form the van-der-Pol’s transformation 

based on the solution to the unperturbed system can be applied: 

sin ; cosz A z A (5.44)

Substituting (5.44) into (5.43) and neglecting the small terms of the second or-

der one obtains: 

2

2

2

2

cos cos sgn sin

cos cos sgn sin

1 , if  

sin cos sin sin

1 sin , if  

1
1 sin 2 sin cos sin

2

A A

A A R A n

u v A

R A n

A A

(5.45)

The main principal resonance in the system (5.45) corresponds to the sur-

face 2 . Two semi slow variables can be introduced in its -vicinity:
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2
2 ; (5.46)

Substituting (5.46) into (5.45) one obtains equations in standard form for aver-

aging:

2

2

2

2

2

cos cos sgn sin

cos 2 cos sgn sin

1 , if  

sin 2 cos 2

sin sin 2

1 sin , if  

sin 2 2 sin 2 cos 2 sin

1
1 sin 2 sin cos 2

2

A A

A A R A n

u v

A

R A n

A A

A A
sin

(5.47)

These equations can be averaged with respect to the fast rotating phase .

5.2.3 Averaging with Respect to the Fast Rotating Phase. Stationary 

Regimes

The result of the averaging (the second order approximation) is as follows: 

2

2 2 2

2

2 2 2

2 2

2 2 2 2

1 1 4
sin

2 3

4 4
cos

3

2 1
sin

3

R
A A

A A

u v R
v A

(5.48)

The effective damping e can be introduced here similar to Chapter 3.  
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1 1

2
e

R
(5.49)

This effective damping includes both the energy dissipation in the spring be-

tween the collisions and energy losses during collisions. But the most interesting 

effect of impacts in the system (5.48) is not the increased effective damping. The 

most interesting effect is expressed through the last term in the last equation, 

which is significantly increased due to the discontinuous condition for  (the 

fourth equation in (5.47)). In other words the contribution of the discontinuous 

jumps in the rotor’s rotation speed increases significantly the stiffness of the 

equivalent pendulum or the vibrational torque [20] in the last equation: 

20 20 20 0

0

sin

2 1
;

3

A W u

u v R
u W

(5.50)

The following analysis is absolutely similar to that in section 5.1. If 

0 20u WA , the only possibility is rotational motion of the pendulum, which cor-

responds to the break off of the resonance. But if 0 20u WA , either rotation 

(also resulting in the resonance’ break off) or oscillations are possible depending 

on the initial conditions. In other words the necessary condition for the existence 

of the stationary resonance is 

0 20u WA (5.51)

If this condition is fulfilled, the system (5.48) has two different stationary solu-

tions with the same amplitude: 

2

0
20 20

(1) (2)0 0
20 20

20 20

4
; 0;

3

arcsin or arcsin

e

u
A

W

u u

WA WA

(5.52)

The necessary condition for the existence of the resonance (3.3.34) can be re-

written now as follows: 

2

0
0

4
0

3 e

u W
u (5.53)
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It is obvious from the classical equation (5.50), that only the second solution 

can be stable (it corresponds to the stable equilibrium point of the equivalent pen-

dulum). 

Averaging with respect to semi-slow oscillations of the equivalent pendulum 

doesn’t differ from the analysis in the section 5.1.4. Corresponding details can be 

found in [39]. 

5.3 Nonlinear Resonant Crusher with Inelastic Collisions 

5.3.1 Problem Description. Equations of Motion 

Consider the system shown in Fig. 5.10. It consists of a frame of mass 1M  in 

whose interior, which has a length 2l , a striker of a mass m  moves freely. An 

inertial exciter characterized by the inertia J  and a static imbalance moment S  is 

placed on the base of mass 2M  and set up in rotation by an induction motor. The 

analysis below is confined to linear approximation of the torque at the motor’s 

shaft:

, 0, 0P U V U V (5.54)

Fig. 5.10. Resonant crusher with inelastic collisions 

This approximation is valid in the vicinity of the system’s natural frequency 

1 2

1 1
c

M m M
(5.55)

Here c  is the stiffness of the spring connecting the base and the frame, the cor-

responding damping is b .

The system under consideration is a simple dynamical model of a resonant 

crusher. The base with the induction motor is separated from the frame in order to 

protect the bearings from the impact loads (cf. the previous section). The collisions 
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between the frame and the striker crush the stones of different sizes between them. 

The energy consumption for crushing is large. Thus we can consider the collisions 

as absolutely inelastic. 

Let us introduce the following variables: 

1x  is the coordinate of the centre of mass of the impact element composed of 

the frame and the striker; 

y  is the relative coordinate of the striker in the clearance; 

2x  is the coordinate of the base carrying the unbalanced exciter; 

  is the rotation angle of the exciter. 

Then the equations of motion and the kinematical conditions for the inelastic 

collisions can be formulated as follows: 

1 2 1

1 1

2 1

1 1

2 2 1

2 1

2 1

2 1

2

2 1

1 1

2 1

1 1

cos

sin

, for 

0,  f

c m
x x x y

M m M m

b m
x x y

M m M m

c m
x x x y

M M m

b m S
x x y

M M m J

U V S
x

J J

c m
x x y

M M m

y b m
x x y y l

M M m

or y l

(5.56)

Equations (5.56) must be supplemented by separation conditions, which de-

scribe transitions from the joint to separate motion stages of the colliding partners: 
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1 2 1 2

1 1

0

for , 0

m m
c x x y b x x y

M m M m

y l y

(5.57)

Equations (5.56) and (5.57) describe motions of the system completely. It is 

sensible now to eliminate the degree of freedom corresponding to the motion of 

the center of mass of the whole system and to convert to undimensioned variables 

and parameters: 

2

1 1 2

2

2
1 22 2

2 1 2

1 2

1 2

1 1
; ; ;

2

; ; ;

0 1; 0 1

m b U V
u v

M m M m M J J

l MS c c
W k k

lM J M M

k k

x x x

(5.58)

Now the equations (5.56) and the separation conditions (5.57) can be rewritten 

as follows: 

2

2

2

2 2

2

1 1

2 cos

2 cos

2 ,  for

0,  for 

x x y x y l

u v

W
k x y k x y l

l

k x y k x y y l
y

y l

(5.59)

2 0, for , 0x y x y y l y (5.60)

Let us notice that the variable 2x  does not appear in the system (5.59), (5.60). 

It can de found from the second equation of the system (5.56) after the equations 

(5.59) and (5.60) are solved. 

We suppose now , , , ,u v  to be small parameters of the same magnitude 

order and omit the terms o :
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2

2 2

2

2

1 1

2 cos

cos

2 ,  for 

0,  for 

2 0, for , 0

x x y x l

W
u v k x l

l

k x y k x y l
y

y l

x y x y l y

(5.61)

System (5.61) shows that both variables x  and  are continuous.  The vari-

able y  is discontinuous and must be regularized in an appropriate way. 

5.3.2 The Regularizing Transformation. The Main Resonance 

The variety of motion regimes, which are possible in the considered system, is 

wide.  It is determined by the sequence of the impacts. Below we shall restrict the 

analysis to an elementary regime characterized by the presence of contact zones 

(finite time intervals of joint motion of the striker and frame) with two collisions 

per frame’s oscillation period.  The following discontinuous transformation can be 

applied in order to regularize the variable y  (cf. the discontinuous transformation 

for systems with inelastic collisions discussed in section 4.4): 

1 1

1

1 1

1

sin ; cos ;

, sin ,

2 , sgn sin

sgn sin cos 2 ,

, 1 2 , sgn sin

x A x A

y lL Ak M

l B M

y B Ak M

L M

(5.62)

Here, as usual, z  means the integer part of z , function 1M  is defined as 

follows:

1 1 1

1, 0
, ; 2 , ,

0, 2
M M M (5.63)

 Variable  is determined by the transcendental condition corresponding to 

the time point of a collision: 
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1 sin 2 ,   when B Ak l (5.64)

New variables are governed by the following equations: 

2 2

2

2

2 2

2 1 2

2 2

2 21
2

2 1

cos 2 cos cos cos

sin 2 cos sin

sin sin

, cos ,

, ,

cos ,

, 2 , sgn sin

A y S l

y l
A

W
u v k A

l

BM k l M

M M

k l
M

B

M M

(5.65)

It is assumed that y  and y  are expressed here in terms of the new phase vari-

ables. We note that the above transformation of variables guarantees identical sat-

isfaction of the equations during the contact motion stages, y l . In the equa-

tions (5.65) this circumstance is manifested in the fact that the right- and the left-

hand sides of the last two equations vanish identically during these stages. The 

variables B and  as functions of time are therefore solutions of a sequence of 

differential equations for which the new initial conditions (5.60) are adopted at 

times determined by the separation conditions. 

The main principal resonance in the system (5.65) corresponds to the sur-

face 1 . Two semi-slow variables and one slow variable can be introduced in 

the -vicinity of the resonance: 

1
; ; ; t (5.66)

Substituting (5.66) into (5.65) one obtains equations in the special form which 

was discussed in Chapter 4. It contains one slow variable A , two semi slow vari-
ables  and , two slave variables  and B , and one fast rotating phase .
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1 1

1

1 1 1 2 1

1

1 1

1

2 2 1

1

1

1

1 1 2

cos 2 cos 2 cos

2 sin sin

sin 2 cos 2 cos

, , sin sin 2

2 sin cos

2 cos ,

A y A l

u v Wl k A v

A y A l

M M yA

lA

k lB M

B 2

2 1 1 2

1

1 1

, 2 cos ,

1 sin 2 cos 2 cos

M lk M

A y A l

(5.67)

The separation conditions take the form 

1, 0,1, 2, , 0,n n n nt n n t B t k A t (5.68)

The slow variable  is determined by the equation 

1 sin 2B Ak l (5.69)

In order to use only one small parameter, we have introduced here the follow-

ing notation 

1 1 1 1; 2 ; ;u u v v (5.70)

These equations can be averaged with respect to the fast rotating phase .

5.3.3 Averaging with Respect to the Fast Rotating Phase. Stationary 

Regimes

The result of the averaging (the second order approximation) is as follows: 

2 1 2 1 2 2

1

2 2 1 2 2 2

1

2 1 1 1 2 2 1 2

2 1 2 2

cos

sin

cos

; 0

A A l lF A l

lA G A l

u v l Wk v

B k A

(5.71)
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Here we have introduced the following notation (subscript 2 is attached to the 

corresponding averaged variables): 

22 1
2 2

1
2 2 2 2

2 2

2 1

1 cos
2

2 cos sin
2

2
sin

A k
F A l

l

k
G A l

l

A k

(5.72)

In order to simplify the analysis of (5.71) the following notation can be intro-

duced: 

2
2 2 2 2 2 1 0 1 1; ; ;

2

A
a W k W u u v

l
(5.73)

Neglecting the small terms O  in the equations (5.71) we obtain the well 

known equation describing a pendulum with the applied external torque: 

20

20 20 20 2 20 20 0

20 0 2 20 20

0

sin

sin

a

W a u

u W a

(5.74)

The following analysis is absolutely similar to that in sections 5.1 and 5.2. If 

0 2 20u W a , the rotation of the pendulum is the only possibility, which corre-

sponds to the break off of the resonance. But if 0 2 20u W a , either rotation (also 

resulting in the resonance’ break off) or oscillations are possible depending on the 

initial conditions. In other words the necessary condition for the existence of the 

stationary resonance is 

0 2 20u W a (5.75)

If this condition is fulfilled, the system (5.71) has two different stationary solu-

tions with the amplitude determined by the equation: 

2 1 0
1 2 2 2

2

u
a a F a

W
(5.76)

These solutions differ through their phases: 
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(1) (2)0 0
20 20

2 20 2 20

arcsin or arcsin
u u

W a W a
(5.77)

It is obvious from the classical equation (5.74), that only the second solution 

can be stable (it corresponds to the stable equilibrium point of the equivalent pen-

dulum). 

Averaging with respect to semi slow oscillations of the equivalent pendulum 

doesn’t differ significantly from the analysis in the section 5.1.4. The correspond-

ing details can be found in [87]. 

It should be added that all the above analysis must be supplemented by an exis-

tence condition for the considered impact regime: 

2 2

1

2
0  or a t

k
(5.78)

If this condition is not fulfilled another regime with less frequent collisions or 

possibly “continuous juggling” will appear. In many practical cases, regimes with 

less frequent collisions are just as undesirable, as the resonance breakdown with 

sharply decreasing vibration amplitude is. In order to avoid this situation the fol-

lowing relationships should be taken into account. If 20

1

2
a

k
 the stationary 

motion of the considered type is impossible. The attraction region of the stationary 

resonance is maximal, i.e. it corresponds to the internal homoclinical loop in Fig. 

5.4, if the following condition holds:  

0

1 2

2 u

k W
(5.79)

Otherwise our analysis is not valid in a part of this loop and we cannot guaran-

tee that the integral curves from this part will reach the stationary point. 

5.4. Conclusions 

Significantly nonlinear resonance is an extremely wide, important and complex 

research field both from practical and from theoretical point of view. It occurs in 

all systems where at least one frequency (either the “natural frequency” or the fre-

quency of excitation) is not constant, but depends significantly on the unknown 

solution. The main peculiarity of the nonlinear resonance is its wide attraction 

area. It spreads in a large (O ) area around the resonant surface. Dynamics 

of systems in the vicinity of the nonlinear resonance is also complex. It is neces-

sary to distinguish between fast motions corresponding to excitation and “visible” 
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oscillations of the system, semi slow oscillations of the phase differences in the 

resonance domain and slow evolution of the general characteristics of the system, 

like its energy or the amplitude of the fast oscillations.   

Standard averaging with considered as the small parameter is sufficient for 
investigating the stationary resonant regimes and their stability, but it does not al-

low finding the attraction area of the stable resonances in the phase space, because 

it is valid within an insufficient time interval. However, the system averaged with 

respect to both fast and semi slow oscillations in the resonance domain is valid 

within a sufficiently long time interval and is therefore suitable for analyzing the 

transient motions.  

The described complex dynamics is especially important if the technical objec-

tive is not to avoid the resonance, but to create and to stabilize intensive vibra-

tions. Then the semi slow phase dynamics is the key point for the development of 

any efficient control. 

The described approach can be easily combined with the averaging procedures 

established for discontinuous systems. This combination is especially important 

because resonant machines are often user for crushing, grinding, screening and 

transporting of bulk materials in ore processing and chemical industries. 
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Elementary Effects 

Systems with high frequency (HF) motions appear everywhere in physics, en-

gineering and common life. The conventional approach to systems with HF mo-

tions is to ignore them completely. Examples for this approach can be found eve-

rywhere. If we are talking about motions of a rigid body we ignore the HF elastic 

waves which are an unavoidable companion for any acceleration or deceleration. 

Investigating elastic waves we ignore the HF thermal oscillations of the molecules 

this body is built of. Analyzing the molecules’ motions we usually ignore the HF 

electron waves replacing them by some kind of imagined linear or nonlinear 

springs connecting particular atoms. Talking with a friend we usually ignore the 

nonlinear electro-magnetic waves in his brain even though without these waves no 

discussion would take place.  

These examples show on the one hand that the ignorance towards HF motions 

is one of the fundamentals of our science and culture. Usually we do not even no-

tice what we ignore in a particular situation.  

On the other hand they permit an idea what is usually meant if one is talking 

about HF motions. Under HF motions we understand oscillations if their fre-

quency significantly exceeds the frequencies of the processes we are interested in. 

It is important that the general term “motions” is replaced here through the term 

“oscillations” being a particular kind of a motion. The reason becomes obvious if 

we look back at the systems with collisions discussed in the previous chapters. 

Any collision itself is definitely much faster than the oscillations we were inter-

ested in, but on the other hand it could never be neglected in investigated prob-

lems.  

There are many reasons why we ignore the HF motions. The first one is that 

our cognition is originated in human senses. In the common life we are used to ig-

nore things which we cannot see, hear, smell or touch. The second and much more 

important reason is that without ignorance, without simplifying modeling the cog-

nition and science would hardly be possible at all. In many cases it would be to-

tally senseless to try to get some useful information about system’s behavior by 

following each thrill of each component when we are really interested in some 

generalized or averaged characteristics.  

The mathematical basis for our ignorance is given through the strong filtering 

properties distinctive for many systems and sensors. However it is well known 

that this kind of ignorance is not always useful and correct. If a nonlinear system 

is excited in the HF domain and the excitation is sufficiently strong, the system’s 

properties with respect to slow motions can be changed significantly. The obvious 
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examples are phase transitions due to increased or decreased temperature like 

melting ice or demagnetized iron. Numerous examples of interaction between HF 

excitation and system’s response at a low frequency can be found in pure me-

chanical systems too. The stabilizing of the upside-down position of a simple pen-

dulum due to invisible vibrations with small amplitude and a frequency much 

higher than the natural frequency of the corresponding linearized system is one of 

the well known examples. Another one is the smoothing of the dry friction in 

presence of sufficiently strong tangential vibrations. The result of this smoothing 

is the ability of HF vibrations to quench the self excited oscillations in systems 

with negative friction gradient. These two elementary examples are considered in 

sections 6.2 and 6.3. Before that the classification of dynamic systems with HF 

excitation is given in section 6.1. The problem of shifted resonances of a pendu-

lum is discussed in paragraph 6.4. The exceptional role of the terms depending on 

the velocities is discussed in paragraph 6.5. The effect of HF vibrations (dither) in 

strongly damped control systems is investigated finally in section 6.6 where some 

advanced ideas like averaging observer are also discussed.  

Examples illustrating general properties of mechanical systems under HF exci-

tation can be found in almost any book discussing nonlinear oscillations [23, 24, 

79, 80]. The main reference in this area is surely the monograph by Blekhman 

[20]. An excellent classification of the contemporary used effects was done by 

Thomsen [119]. Some additional examples can be found in [81, 120, 121 – 125].  

Mathematical basics for the averaging of systems with HF excitation are dis-

cussed in Chapter 7. Several advanced examples concentrated on the effect of the 

oscillating terms containing the generalized velocities are also investigated there. 

This chapter is strongly recommended not only to mathematicians but also to 

those who are interested in why the analysis of the HF vibrations can influence our 

world-outlook. We live at the threshold of the new scientific revolution. The deep 

understanding of interactions between different scales in time and space domains 

will be one of the main scientific challenges in the coming decades.  

6.1 Classification of Systems with HF Excitation. Weakly 
Excited Systems 

6.1.1 Classification of Systems with HF Excitation 

In this chapter we are going to consider systems of “mechanical type”, i.e. systems 

described by second order differential equations as follows: 

, , ,x x x t t (6.1)

Here x is an n -dimensional vector of the generalized coordinates, x is the 

corresponding vector of the generalized velocities, 1 is a large parameter. 
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We assume to be an n-dimensional vector of  forces which depends 2 -

periodically on the fast time t . The presence of the terms depending on the 

fast time expresses the presence of the HF excitation. 

Depending on the magnitude of the integer parameter one can distinguish 

between systems with weak, strong and very strong excitation: 

The HF excitation is weak for 0

It is strong for 1

It is very strong for 2

6.1.2 Systems with Weak HF Excitation 

In this section we consider the trivial case of the weak excitation. It illustrates 

clearly, why the HF excitation and the corresponding motions are usually ne-

glected.

The equations (6.1) can be easily transformed to the standard form for averag-

ing. Converting to the fast time as a new independent variable and rewriting 

(6.1) as a system of 2n first order differential equations we obtain: 

1

, , ,

1

x y

y x y t

t
(6.2)

These equations can be averaged directly if the function is sufficiently 

smooth. The equations of the first order approximation can be written as follows: 

1 1

1 1 1, , ,

x y

y x y t

t

(6.3)

If we return back to t as the independent variable, we obtain the final averaged 

equation:

1 1 1, , ,x x x t (6.4)

Here and further means the average of with respect to the fast time .

The solution to (6.4) is asymptotically close to the solution of the original system 

(6.1) in the time interval O or 1t O .
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The obtained result is very simple. The solution to the system with the weak HF 

excitation is a superposition of small fast oscillations and slow evolution of the 

system. In many cases these components are almost independent.  

6.1.3 The Weakly Excited Pendulum 

In order to illustrate this statement let us investigate a pendulum with the verti-

cally oscillating suspension point (see Fig. 6.1). Its motion is governed by the fol-

lowing equation: 

2
2 2

2
2 sin sin sin

d d
ml b mgl mlu t

dt dt
(6.5)

This equation can be transformed to the dimensionless form if we introduce the 

following parameters and variables: 

0 0 2

0 0

; ; ; ; ;
g b u d

t t a
l ml l dt

(6.6)

sinu tg

m, l

sinu tg

m, l

Fig. 6.1. Pendulum with a vertically vibrating suspension point 

This transformation leads to the following equation: 

22 sin sin sina t (6.7)

This equation contains three dimensionless parameters: ,a and . In this 

and the next chapter we shall always presume to be a large parameter. In this 
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section we presume additionally that damping is sufficiently small 1O
and the prescribed support oscillations’ amplitude is so small that the product 

2 1a q O , i.e. 
2a O . All the assumptions of our analysis are 

valid as long as these requirements are fulfilled. The equation (6.7) can be aver-

aged directly. The result is as trivial as it was expected. It describes the motions of 

the same pendulum without any external excitation: 

1 1 12 sin 0 (6.8)

In other words, the weak HF excitation and the corresponding motions can be 

ignored at least with the accuracy corresponding to the first order approximation. 

The mistake has the order 
1O , i.e. it decreases with the increasing excita-

tion’s frequency if the excitation’s intensity q remains constant.  

This result is illustrated in Fig. 6.2 and Fig. 6.3, where the simulation results are 

displayed for both an excited and unexcited pendulum for the following parame-

ters values: 0.1; 10; 0.01 ( 1)a q . The simulations were per-

formed for the same initial conditions: 0 3; 0 0 . The results are 

shown for both the swing angle of the pendulum and its velocity.  

It is interesting to notice that there is no visible difference between the solutions 

to these systems at the coordinate level. A small difference remains visible if we 

compare the velocities. This small difference being seemingly insignificant here 

becomes more and more important if we increase the excitation’s intensity.  The 

principal difference between coordinates and velocities in the mechanical systems 

under HF excitation will be explicitly discussed in section 6.4. Now let us move 

on and discuss the same pendulum under the strong HF excitation. 

t

(t
)

system without HF excitation
system with HF excitation

Fig. 6.2. Comparison between the swing angle of a pendulum without HF excitation and the 

same pendulum in the presence of a weak HF excitation 
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t

' (
t
)

system without HF excitation
system with HF excitation

Fig. 6.3. Comparison between the velocities 

6.2 A Strongly Excited Pendulum with the Oscillating 
Suspension Point. Stiffening, Softening and Biasing 

6.2.1 A Pendulum with the Vertically Vibrating Suspension Point: 

Equations Governing the Slow Motions 

The same pendulum as in the previous section is investigated here but we change 

our assumptions about the intensity of the external excitation. In other words, the 

system is still governed by the equations (6.7) but now we suppose: 

1 ;a O a A O (6.9)

It means in terms of the previous section the pendulum is excited strongly. Let 

us convert to the fast time as a new independent variable: 

2

1

2 sin sin sin

; 1;

a

d
t

d

(6.10)

Now we can convert from the second order differential equation to a system of 

two first order equations as follows: 

2 sin sin sinA
(6.11)
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The unperturbed system corresponding to (6.11) is: 

0

0 0

0

sin sinA
(6.12)

Its general solution is easy to obtain: 

0

0 0cos sin

const

A
(6.13)

Using this solution to the unperturbed system we can apply the following trans-

formation in order to get a system in the standard form for averaging: 

cos sin

cos sin

sin cos cos 2 cos sin

A

A

A A

(6.14)

These equations can be averaged directly: 

2 2 2

1 1 1 1 1

1
2 sin sin cos 0

2
A (6.15)

Returning back to the slow time as the independent variable we obtain the 

equation governing the slow motions of the HF excited pendulum (first order ap-

proximation): 

2

1 1 1 1

1
2 sin sin 2 0

4
A (6.16)

6.2.2 Discussion of the Results for the Vertically Excited Pendulum 

The equation (6.16) is very interesting from many points of view. First of all it 

is an autonomous system. It does not contain the explicit time. On the other hand 

it differs from the equation for the unexcited or weakly excited pendulum (6.8) 

through the last term 
21

14
sin 2A . This term represents the effect of the HF exci-

tation on the slow motions of our system and is called “the vibrational force”

(compare [20] and Chapter 5). If we neglect the damping, (6.16) would be a con-

servative system. Its main properties can be described by the corresponding poten-

tial function: 
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1 1

1

2

1 1

2 0

1
1 cos 1 cos 2

8
A

(6.17)

The free constant in the potential function is chosen here in order to assure 

0 0 . This function for different values of the excitation’s intensity A is

shown in Fig. 6.4. 

A=0 A=1 A=2 A=3

Fig. 6.4. Potential function for the slow motions of the vertically HF excited pendulum 

The pendulum without HF excitation (i.e. for 0A ) has two equilibrium 

points: the down-pointing equilibrium 0 and the up-pointing one .

The first one corresponds to the minimum of the potential energy and is stable; the 

second one corresponds to the maximum and is consequently unstable. The effec-

tive stiffness of the pendulum in the vicinity of its stable equilibrium position is 

equal to one (according to our undimensioned notation). This effective stiffness 

increases in presence of the HF excitation: 

0 2 2 21 1
2 2

1 1effC A a (6.18)

The same statement is valid for the effective frequency of small slow oscilla-

tions in the vicinity of this point: 

0 2 21
2

1eff a (6.19)

This effect is natural to call “stiffening” [119].  
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A similar interpretation can be given for the originally unstable up-pointing 

equilibrium position. The corresponding effective stiffness and the effective fre-

quency also increase in presence of the HF excitation: 

2 2 2 21 1
2 2

1; 1eff effC a a (6.20)

The up-pointing equilibrium becomes stable as soon as this stiffness becomes 

positive, i.e. for 2a . This threshold value guarantees also that the effective 

frequency becomes real. This change is connected with the appearance of two ad-

ditional equilibriums corresponding to the maxima of the potential energy. These 

equilibriums are obviously unstable. 

6.2.3 The Pendulum With the Horizontally Vibrating Suspension 

Point: Equations of Slow Motions and System’s Behavior  

The situation changes slightly if we consider the same pendulum which the sus-

pension point oscillates in the horizontal direction (see Fig. 6.5). Its equations of 

motion are similar to the case of the vertical excitation. In the undimensioned form 

these equations can be written as follows: 

2

1
1 1

0

2 sin sin cos

; ;

b

v
t b

l

(6.21)

The whole analysis is also similar to the previous case. The equation of the first 

order approximation which governes the slow motions of the pendulum is 

2

1 1 1 1 1

1
2 sin sin 2 0;

4
B B b (6.22)

1sinv t

g

m, l

1sinv t

g

m, l

1sinv t

g

m, l

Fig. 6.5. Pendulum with the horizontally vibrating suspension point  
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The only difference between this case and the system with the vertical HF exci-

tation is the sign of the vibrational force. Now it is always negative. It reveals it-

self in the corresponding potential energy of the averaged system, which is shown 

in Fig. 6.6. 

B=0 B=1 B=2 B=3

Fig. 6.6. Potential function for the slow motions of the horizontally HF excited pendulum 

The effect of the HF vibrations is in this case different. The effective stiffness 

corresponding to the down-pointing equilibrium decreases with increasing inten-

sity of the excitation: 

0 2 2 21 1
12 2

1 1effC B b (6.23)

This equilibrium becomes unstable, if this intensity is sufficiently strong 

( 1 2b ). It is quite natural to call this effect “softening” correlating this 

name with the stiffening in the previous case. The up-pointing equilibrium re-

mains unstable for any excitation’s intensity. But the lost stability of the down-

pointing equilibrium results in two new symmetrically situated stable equilibriums 

appearing at the same threshold: 

2 2

1

2
arccos

b
(6.24)

Figure 6.7 shows the result of the numeric simulations for the pendulum. It is 

not excited initially. After some transient process the pendulum stabilizes itself in 

the down-pointing equilibrium. At the time point of 25 seconds the HF excitation 

is switched on. A new transient process starts. At its end the pendulum stabilizes 

itself in the new equilibrium and remains tilted. This effect is usually called “bias-
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ing” (cf. [119]). The thick line for the pendulum’s position is a result of its HF vi-

brations.

-1

0

1

2

0 20 40 60 80

t

Fig. 6.7. Biasing of the pendulum due to horizontal HF excitation 

This effect can be also considered as a control mechanism. Applying an appro-

priate HF excitation one can bias the pendulum from its original down-pointing 

position. The disadvantage of the control mechanism discussed above is the in-

definiteness of the final stable position. According to (6.24) there are two stable 

equilibriums. Which one will be the final system’s position depends on the initial 

conditions. This disadvantage can be easily avoided if we apply the two excitation 

types (vertical and horizontal) simultaneously.  

6.2.4 The Pendulum Excited both Vertically and Horizontally 

Consider a pendulum which suspension point is excited both in vertical and 

horizontal directions. The excitation’s amplitudes are different ( a for the vertical 

excitation and a for the horizontal one) but the excitation’s frequency is the 

same. We introduce in addition the phase difference between the excitations .

Then the equation of motion for the excited pendulum in the undimensioned form 

can be written as follows: 

2 22 sin sin sin sin cosa t a t (6.25)

The chosen excitation form means that the suspension point moves along an   

ellipse. The orientation of the ellipse and the direction of motion can be chosen 

arbitrarily (see Fig. 6.8). 
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2
; 0a a

2
; 0a a

2
; 0a a; 0a a

2
;a a

2
;a a

2
; 0a a

2
; 0a a

2
; 0a a

2
; 0a a; 0a a

2
;a a

2
;a a

Fig. 6.8. Some possibilities to choose the motion of the suspension point 

The same approach can be used in order to analyze the slow motions of the el-

liptically excited pendulum. Introducing the fast time as the new independent vari-

able and converting to a system of two first order differential equations we obtain:  

2 sin sin sin sin cosa a
(6.26)

The large terms in (6.26) can be eliminated if we apply the transformation 

based on the solution to the unperturbed problem: 

cos sin cos cosa a (6.27)

The equations for and are in the standard form and can be averaged di-

rectly. Returning back to the slow time one obtains the following equation govern-

ing the slow motions of the elliptically HF excited pendulum: 

2 2 2 2

2 sin

1 1
sin 2 cos cos 2

4 2
a a a a

(6.28)

The corresponding potential function is: 

2 2 2

2

1
1 cos 1 cos 2

8

1
cos sin 2

4

a a

a a

(6.29)
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Figure 6.9 shows the potential function for the particular case 
2

a a
for different values of the phase difference .

Fig. 6.9. Potential function for the slow motions of the elliptically HF excited pendulum 

It is clear that it is possible not only to make the down pointing equilibrium un-

stable applying the directed HF excitation, but to bias the equilibrium to some dif-

ferent position. The down-pointing position in Fig. 6.9 for 0 and is

not equilibrium at all. The pendulum can be tilted in one or another direction de-

pending on the phase difference . It becomes also possible to create new stable 

equilibriums in the upper semi-circle, which differ from the up-pointing position. 

In the previously discussed cases it was impossible.  

If we are interested in the bias of the pendulum from its down-pointing equilib-

rium, we can linearize the equation (6.28) in the vicinity of 0 and obtain the 

approximate expression for the new equilibrium in the presence of the HF excita-

tion:

2

2 2 2

cos

2
st

a a

a a
(6.30)

The same result can be also obtained directly from the linearized equation 

(6.25). The result has a very characteristic structure. The stationary tilt is propor-

tional to the product of the excitation’s amplitudes. We will find a similar struc-

ture in a much more complex problem of a controlled pendulum which is dis-

cussed at the end of this chapter. 

The effective stiffness in the new equilibrium is  

2 2 21
2

1effc a a (6.31)
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6.3 Shifted Resonances of the Pendulum. The Overlapped 
Slow Excitation and the Slowly Modulated HF Excitation 

6.3.1 Two Types of Bi-harmonic Excitation 

The described phenomenon of the stiffening and softening of a nonlinear sys-

tem is deeply connected with the so called “shifted resonances”. The basic idea of 

the shifted resonances is quite simple. Consider a system excited both at a slow 

and a high frequency. The influence of these two excitations cannot be analyzed 

separately. The strong HF excitation dominates. Stiffening or softening is a result. 

If the system with the effectively changed stiffness is excited slowly then one can 

expect it would behave resonantly at frequencies corresponding not to its original 

natural modes but at the frequencies corresponding to the new ones. It is really the 

case. This statement becomes clear if we investigate the pendulum excited both 

vertically and horizontally (see Fig. 6.10). We suppose the external excitations to 

contain both slow and fast components. There are two different types of slow 

components which are interesting for our analysis. The first one is an excitation 

which is added to the fast excitation, i.e. the fast excitation is overlapped by the 

slow component. This type of excitation is displayed in Fig. 6.11(a). The second 

one is the slowly modulated fast excitation. The corresponding example is shown 

in Fig. 6.11(b). An example of the general excitation containing both overlapping 

and modulating slow components is shown in Fig. 6.11(c). 

,v t t

g

m, l

,u t t ,v t t

g

m, l

,u t t

Fig. 6.10. The pendulum excited in two directions. 
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Fig. 6.11. Slowly overlapped and slowly modulated HF excitations 

6.3.2 Obtaining Equations Governing the Slow Motions of the 

Pendulum

The equation governing motions of such a pendulum can be written in the un-

dimensioned form as follows: 

2 sin cos sinu v (6.32)

The following form can be presumed for the excitations: 

, sin

, sin

u t t a t a t t

v t t a t a t t
(6.33)

We will assume these given functions to have the following magnitude orders: 

1

1 ; 1 ; 1 ; 1 ;

1; 1

a O a O a O a O
(6.34)

The assumption a a t means 1 ; 1a O a O . Similar estima-

tions are valid for the functions , ,a a a .
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The following analysis is very similar to the previous section. The equation 

(6.32) can be transformed to a system of two first order differential equations (we 

convert to the fast time as the new independent variable and take (6.33) into ac-

count):

sin cos sin 2 cos cos 2

sin sin sin 2 cos sin sin

a a a a

a a a a

(6.35)

 We can apply the following transformation based on the general solution to the 

unperturbed problem: 

cos cos cos sina a (6.36)

The result is a system in the standard form which can be averaged. The equa-

tions of the first order approximation are as follows: 

2 2 2

2

1
2 1 cos sin

2

1
cos 2

2

a a a

a a a

(6.37)

We have returned here back to the original slow time. The equation (6.37) dif-

fers from the equation (6.28) discussed in the previous section through the fact 

that its right-hand side and the expression in brackets on the left-hand side depend 

explicitly on the slow time, i.e. they contain the slow result of the slowly over-

lapped and modulated HF excitation.  

6.3.3 The Effect of the Overlapped slow Excitation  

Consider the case without HF excitation first. In other words, assume 

0a a and restrict the analysis to oscillations in the vicinity of the down-

pointing equilibrium. Then the equation (6.37) can be linearized as follows: 

2 1 a a (6.38)

This equation contains two excitation terms. The external excitation is deter-

mined by the horizontal oscillations of the suspension. The vertical oscillations of 

the base lead to the parametric excitation of the pendulum. In other words in the 

presence of the horizontal slow excitation the pendulum behaves as a nonlinear 

resonant oscillator. In the presence of the vertical slow excitation one can expect 

instabilities and parametric resonance.  
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This qualitative statement remains valid in the presence of the non modulated 

HF excitation. The only difference is that the resonance frequencies for the exter-

nal excitation and the instability areas with respect to parametric excitation be-

come related to the effective stiffness instead of the real one. The corresponding 

equation is 

2 21
2 1

2
a a a (6.39)

If we consider for example the case of the vertical non modulated HF excitation 

( , 0a const a ) and presume that the overlapped horizontal excitation is a 

harmonic one ( cos slowa A t ) and the overlapped vertical excitation is 

equal to zero ( 0a ), then the external resonance can be expected for the excita-

tion’s frequency 

0 2 21
1 1

2
slow eff a (6.40)

 If the overlapped horizontal excitation is equal to zero but the overlapped ver-

tical excitation is a harmonic one, i.e. cos slowa A t , then slow parametric 

resonances can be expected at the frequencies determined according to the Strutt’s 

diagram [119]. The relationships between the frequencies corresponding to the pa-

rametric resonances can be found as follows. The equation (6.39) has to be trans-

formed to the Mathieu’s form 

2

2
2 cos 2 0M M

d
t

dt
(6.41)

It can be done if we neglect damping, introduce the new time and use the fol-

lowing notation: 

2

2

1
; 4 ; 2

2

eff

slow M M

slow

t t A (6.42)

The roots of the parametric resonances correspond to 

2
2

, 1,2,
eff

M slown n
n

(6.43)

In other words the instability areas for parametric resonances are also shifted 

due to the HF excitation. This shift can be arbitrarily large if the HF excitation is 
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sufficiently strong. The resonances can be observed at unexpected excitation’s fre-

quencies as the consequence. Fig. 6.12 illustrates the described behavior.  

0 100 200 0 100 200

(a) (b)

0 100 200 0 100 200

(a) (b)

Fig. 6.12. Reaction of a pendulum to the suddenly switched on HF excitation: (a) – the slow 

external excitation according to the case (6.40); (b) – the slow parametric excitation accord-

ing to the case (6.43) 

In both cases the complete nonlinear pendulum was simulated. The pendulum 

is not HF excited at the beginning (Fig. 6.12 (a)). The pendulum oscillates with 

comparatively small amplitude because the excitation’s frequency is far away 

from its natural frequency. The HF excitation is switched on at the time t=100. 

The effective frequency changes as a result and coincides with the excitation’s 

frequency. The oscillations frequency remains constant but the amplitude in-

creases significantly although the amplitude of the excitation did not changed. 

This effect can be interpreted as a shifted resonance. The numeric simulations 

were performed for the following parameter values:  

50; 0.04; 0.1;a A 1,732; 0.05slow .

In case (b) the slow excitation has the parametric nature. That’s why the pendu-

lum does not move at the beginning. As soon as the HF excitation is switched on 

(t=50) the effective frequency changes and the equilibrium becomes unstable with 

respect to slow parametric excitation. The amplitude increases exponentially until 

the nonlinearity limits it. The numeric simulations were preformed for the same 

parameter values as in the previous case but 0.1; 3.464; 0slowA A .

The whole situation may seem to be a mysterious one for an observer who does 

not notice the fast motions. He sees only the overlapped low excitation and knows 

that nothing has changed. Suddenly the amplitude start to increase or even the 

equilibrium becomes unstable. The only way to understand the situation is to 

broaden the frequency limits of the observer and notice the HF excitation. It be-

comes very visible if one measures the velocities (or accelerations) instead of the 

displacements. On the other hand the measuring system must be able to “see” the 

HF motions, i.e. its own resonance must be much higher than the HF excitation 

and the data processing system should not contain a low pass filter. These re-

quirements can be easily fulfilled in mechanical engineering. In the electronics it 

might be much more difficult. 

The same effect can be used in order to avoid the resonances. The stiffening or 

softening due to the controlled HF excitation can shift the effective frequency 
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away from the excitation’s frequency and quench the dangerous or disturbing 

resonances. The particular advantage of this approach is that the HF excitation fre-

quency can be so high that it would not disturb a normal customer. An example of 

quenching an external slow resonance by shifting of the effective natural fre-

quency is displayed in Fig. 6.13. 

0 100 200

Fig. 6.13. The slow resonance quenched by the HF excitation switched on at t=50.  

6.3.4 The Effect of the Slowly Modulated HF Excitation 

The effect of a slowly modulated HF excitation is quite similar. Let us discuss 

the parametric case and consider the vertical excitation. The corresponding equa-

tion for the first order approximation is: 

2 21
2 1 0

2
a a (6.44)

The role of the modulated excitation is similar to that of the slow overlapped 

excitation. Assuming that there is no overlapped excitation and the modulation is a 

harmonic one, i.e. mod0; cosa a A t , one obtains the Mathieu’s equa-

tion with the following parameters  

2 2 2 21
4

2 2

mod mod

1
;

8

A A
(6.45)

The corresponding simulation results are shown in Fig. 6.14. 
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0 100 200

Fig. 6.14. The slow parametric resonance due to the slowly modulated HF excitation; the 

simulations were performed for the following parameters: 

mod50; 0.04; 1.414; 0.05A .

The zoomed display of the modulated excitation and the pendulum’s response 

are shown in Fig. 6.15. 

190 195 200 190 195 200

(a) (b)
190 195 200 190 195 200190 195 200 190 195 200

(a) (b)

Fig. 6.15. (a) – The slowly modulated excitation; (b) – the slow parametric resonance 

6.3.5 Using the Slowly Modulated HF Excitation in Order to Quench 

the Slow Excitation 

The qualitative equivalence between the overlapped slow vibration and the 

slowly modulated HF excitation in the equation (6.44) is obvious. This fact indi-

cates that these two influences can compensate each other. This compensation 

cannot be perfect, because the term a usually does not contain a constant com-

ponent. The term 
2 21

2
a representing the effect of the slow modulation, how-

ever always contains the constant. Nevertheless the harmonically oscillating com-

ponents can be always chosen in order to eliminate the excitation. 

In our case of the slow harmonic parametric excitation the choice is very sim-

ple. The following condition must be fulfilled: 
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2 2

mod

mod

2 2

2

mod

1

2

cos ; cos

2

16

slow

slow

a a const

a A t a A t

A
A

(6.46)

The example of a numeric simulation illustrating this approach is displayed in 

Fig. 6.16. It is the direct prolongation of the simulation shown in Fig. 8.14. Begin-

ning at the time point t=200 the slow overlapped excitation corresponding to 

(6.46) is switched on. 

0 100 200 300

Fig. 6.16. The overlapped and modulated excitations compensate each other 

The amplitude of the oscillations decreases as a result due to the normal damp-

ing. This approach can be used in both directions – to quench the slow parametric 

excitation by the applied modulated HF excitation and vice versa.  

The same idea can be used to quench the external excitation too. The terms a
and

21
2

a a must compensate each other in this case. It means that modulated 

HF excitations in both directions (vertical and horizontal) are necessary in order to 

compensate the slow horizontal excitation. Another peculiarity in this case is the 

fact that the constant uncompensated component of the HF excitation will cause a 

constant bias of the pendulum from the down-pointing equilibrium.  

This idea can also be used in order to quench or compensate the external and 

the parametric slow excitations by the appropriately modulated HF excitations si-

multaneously. The corresponding control strategies can be accomplished by the 

piezo-electric actuators. 
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6.4 The First Generalization and the Exceptional Role of 
the Terms Depending on the Velocity in Systems with HF 
Excitation

The approach we have used in all the examples can be easily generalized for a 

large class of discrete systems with strong HF excitation dependent only on the 

positional coordinates and time and independent from the velocities.  

6.4.1 The Basic Equation of the Vibrational Mechanics 

Consider a system described by n  second order ordinary differential equations: 

, , , ,x F x x t x t t (6.47)

 Here x is the vector of the positional coordinates, and the function depends 

2 -periodically on the argument t . It is important that the strong exciting 

term does not depend on the velocities x . The fact that the function F does 

not depend on the fast time is not important but it is useful for the qualitative in-

terpretation. The first step in the analysis if we are going to apply averaging is to 

convert to the fast time t as the new independent variable. The result is the 

following system: 

2 1

1

, , , ,

1

x F x x t x t

t (6.48)

This system is in general unsuitable for the asymptotic analysis. The reason is 

the fact that the system’s velocity written in terms of the fast time may be large. 

The variable 
1x can have the magnitude order 

1
and the functional depend-

ency of F from this argument is unknown. In other words this argument in F
can generate terms of an arbitrary asymptotic order in our equations. The seem-

ingly natural assumption that F must be a bounded function of all its arguments 

does not hold even for the elementary linear damping. The usual turbulent damp-

ing is proportional to 
2x . It would generate the large term 1O in the equations 

(6.48).  The only case where the function F is usually bounded describes the dry 

friction. This case will be discussed in the next paragraph.  

The problem was avoided in the previous examples because converting to a 

system of the first order differential equations we have introduced the velocity as 

follows:
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, , , ,

x v

v F x v t x t

t

(6.49)

What does this assumption really mean? Returning back to the original slow 

time as the independent variable we could write x v . This relationship means 

that the coordinate and the velocity are the variables of the same magnitude order. 

This assumption obviously cannot be fulfilled for arbitrary motions or arbitrary 

initial conditions. Writing (6.49) we restrict our analysis to the motions with lim-

ited velocities 1v O x O .

The same idea can be also formulated not for the solutions but for the right 

hand sides of the equations. We can require that F has to be bounded in the vi-

cinity of the solution to the averaged system we investigate. The fulfillment of this 

requirement can be easily checked a posteriori. Fig. 6.17 shows the displacement 

and the velocity of the resonantly excited pendulum. It is clear that the require-

ments to the velocity are fulfilled in this case.  

-2

-1

0

1

2

Displacement Velocity

Fig. 6.17. Displacement and velocity of the resonantly oscillating HF excited pendulum. 

This picture illustrates the most important property of all solutions discussed in 

this chapter. The motion of a strongly HF excited system is a superposition of a 

slow evolution (or slow oscillations) and small fast vibrations which are hardly 

visible if we consider (or measure) displacements. The velocity however is a su-

perposition of the slow evolution and fast oscillations which have the same magni-

tude order. The fast oscillations of the velocity cannot be overseen in comparison 

to the averaged velocity.

This fact is also expressed in the procedure which we have used in order to 

transform the system (6.49) into the standard form suitable for the averaging. 



www.manaraa.com

236      6. High Frequency Excitation: Basic Ideas and Elementary Effects 

This transformation obtained as the general solution to the unperturbed system 

is

, ,

, ,

v U x t u

U
x t

(6.50)

This transformation means that the velocity is a sum of slow and fast oscilla-

tions of the same magnitude order. The function , ,U x t describes the large 

fast velocity’s oscillations. It is natural to require from this function, it has to be 

2 -periodic with respect to the fast time and its average has to vanish. 

2

0

1
, , 2 , , ; , , 0

2
U x t U x t U U x t d (6.51)

Applying this transformation to the system (6.49) one easily obtains: 

, ,

, ,

x U x t u

U U
u F x u U t u U

t x

t

(6.52)

This is a system in the standard form. It can be averaged according to the usual 

procedure. Take the following identities into account: 

0; 0
U U

U U
t t x x

(6.53)

Then we immediately obtain the equations of the first order approximation (the 

averaged quantities have index 1): 

1 1

1 1 1 1

1

, , , ,

x u

U
u F x u U x t t U

x

t

(6.54)

Sometimes another periodic function with vanishing average is used instead of 

U (cf. [20, 34, 35, 119]. We can introduce  
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2

1 1 12
, , : , , , ,

0

x t U x t x t
(6.55)

Notice that the following identity is fulfilled because all the functions are peri-

odic:

2 3

2

1 1 1 1

U
U

x x x x
(6.56)

Now we can rewrite (6.54) as the system of the second order differential equa-

tion with the slow time as the independent variable: 

1 1 1 1

1

, , , ,
U

x F x x U x t t U
x

(6.57)

The equivalent form is: 

1 1 1

1

, ,x F x x t
x

(6.58)

This equation describes the slow motions in a strongly HF excited system and 

can be considered as the basic equation of the vibrational mechanics [20]. 

The form (6.57) is very similar to the original system (6.47) and shows clearly 

the principal effect of the HF excitation. It can be formulated in terms of the vibra-

tional forces. The equations (6.57) or (6.58) can be rewritten as follows 

1 1 1 1 1

1 1 1 1 1 1

1 1

1 1

1 1 1 1 1 1 1

, , , ,

, , , , , ,

, ,

, , , , , , , ,

d i

d

i

x F x x t V x x t

V x x t V x x t V x x t

U
V x x t U

x x

V x x t F x x U x t t F x x t

(6.59)

Here we have explicitly separated the original slow forces F and the so called 

effective vibrational forces V contributing to the equations governing the slow 

motions of the system. An observer overlooking the fast motions (which are really 

small) could think the system moves as if there were some additional slow forces 

of the unknown physical origin. This misinterpretation would be based on the ig-

norance towards the small fast oscillations.  
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The vibrational forces can be split into two compounds. The first one is dV . It 

can be characterized as the direct vibrational force. It was the origin for all the ef-

fects discussed above: stiffening, softening, biasing and shifted resonances. The 

second compound is iV which can be called the induced vibrational force. It ap-

pears only if the real slow forces depend nonlinearly on the velocities. In the pre-

vious examples the only slow force depending on the velocities was the linear 

damping. The induced vibrational force did not appear in those cases, because the 

corresponding average vanishes: 

1 1 1 1 1

1 1 1 1 1

, , , ,

, , , , 0

x U x t x U x t x

F x t k x U x t F x t kx
(6.60)

In the next section we will discuss how the HF excitation influences systems 

with dry friction which is an important example of nonlinear forces depending on 

the velocities. An additional advantage of the dry friction is the fact that it remains 

bounded even for large velocities. The induced vibrational forces are of the prin-

cipal importance in these systems. 

6.4.2 A Remark on the Exceptional Role of the Terms Depending on 

the Velocities 

Before we continue with these examples, let us explain why we have excluded 

the velocities as an argument in the function corresponding to the strong HF 

excitation. The equations (6.49) can be rewritten as follows in this general case: 

, , , , ,

x v

v F x v t x v t

t

(6.61)

The corresponding unperturbed system is 

0 0

0 0

0 0 0 0

0

0

, , ,

x x const

t t const

v x v t

(6.62)

The last equation describes the fast motions of the system. Unfortunately its 

general solution cannot be written in the form (6.50) 

0 0 0 0 0, , , , ,v U x t C U x t C (6.63)

The corresponding transformation cannot be applied to our system. It means a 

different modified asymptotic approach is necessary in order to analyze a system 
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with a strong fast excitation depending on the velocities. A special case of these 

systems is discussed in section 6.6. It corresponds to the case of strongly dissipa-

tive systems. Systems with the HF excitation depending on the velocities will be 

discussed in the next chapter. 

6.5 Smoothening of Dry Friction in Presence of HF 
Excitation. Quenching of the Friction Induced Oscillations 

Several examples of systems with dry friction were discussed in Chapter 2. In this 

section we are going to consider these phenomena in presence of the HF excita-

tion. The main result connected with the HF excitation in systems with dry friction 

is the “smoothening”. This term describes the change in the system’s behavior if 

one switch on the tangential HF excitation. The main point is: no sticking is possi-

ble in systems with dry friction if the HF excitation is strong enough. It is a usual 

reason for example for self-unscrewing bolts and nuts in vibrating machines. The 

same effect is often used in controlled mechanisms in order to reduce the unde-

sired hysteresis disturbing the control system. In the specific language of the con-

trol specialists the HF excitation is called dither.  

6.5.1 Smoothening of Dry Friction: A Simple Example 

Let us consider an elementary example of a mass on a vibrating plane in order 

to demonstrate, how discontinuous dry friction can be smoothed through the ex-

ternal HF excitation (Fig. 6.18). 

g
m

sina t

g
m

sina t

Fig. 6.18. A mass on the tangentially vibrating plane 

Let us assume that the mass is pressed towards the plane by gravity. The fric-

tion between the mass and the plane is supposed to be a symmetric one. We con-

sider the mass as a “point mass”, i.e. all the effects connected with its “rocking” 

are neglected. 

The equation of motion for this system can be written as follows (compare with 

the corresponding equations in Chapter 2): 
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2

2

2 2

sin

sgn , if 0 or sin

sin , if 0 and sin

fr

fr

mx mg x ma t

a
x x t

g
x

a a
t x t

g g

(6.64)

Here x is the coordinate of the mass relative to the plane and x is the corre-

sponding velocity determining the friction force. The friction coefficient is, as it 

was already mentioned, not a usual function but some kind of mapping being spe-

cific for dry friction. The last line in (6.64) expresses the possibility of sticking: if 

there is no relative motion between the mass and the plane and the external force 

is smaller that the maximum friction force. Then the friction force compensates 

the external force exactly and the mass remains motionless. 

Introducing the fast time we can rewrite (6.64) as follows: 

2 1sin ,frx x g a (6.65)

We suppose the excitation amplitude to be of the same magnitude order as our 

small parameter, i.e. 1a O a O . The equation (6.65) can be 

rewritten as a system of two first order differential equations: 

sinfr

x u

u u g a
(6.66)

Using the obvious solution to the unperturbed system we can transform (6.66) 

to the standard form as follows: 

cos

cos

cosfr

u v a

x v a

v g v a

(6.67)

The system (6.67) seems to be in the standard form for averaging. However we 

must check if sticking is possible here or not. The relative velocity must be equal 

to zero for sticking. It means: if the mass has originally slipped it could stick if the 

following condition is fulfilled: 

cosv a (6.68)
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But this condition is not sufficient for sticking. The additional condition is: the 

external force at this time point must be smaller than the maximal friction force, 

i.e.

sina g (6.69)

We have terms of different magnitude order in this inequality. Its left hand side 

is large; its right hand side is small. This inequality can be fulfilled only 

if sin O . It is a very short time interval. With the accuracy O this

time interval can be considered as an infinitesimally short one. It means that for 

the first order approximation no sticking is possible in a strongly HF excited sys-

tem. The analysis must be extended if higher order approximations are of signifi-

cant interest.  Comparing (6.69) with (6.68) one can easily see that sticking could 

be possible only if the following condition if fulfilled for the velocity of the mass: 

v a (6.70)

For arbitrary initial conditions it is obviously possible. The usual way however 

is to assume that v a  and check that for stationary solutions this condition 

is always fulfilled.

Summarizing, one can say that in systems with a strong HF excitation the com-

plex friction law used in (6.64) can be replaced by a simple one: 

sgnfr x x (6.71)

Inserting (6.71) into (6.67) one obtains: 

cos

sgn cos

x v a

v g v a
(6.72)

The graph of the sign-function displayed in Fig. 6.19 explains the averaging. 

-1

0

1

-1

0

1

Fig. 6.19. The graph of the function sgn cosa b
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1,  

2
sgn cos 1 arccos ,

1,  

v a

v v
a v a

a a

v a

(6.73)

The corresponding first order approximation to (6.72) can be written as fol-

lows:

sgn cos

x v

v
v g g v a

a

(6.74)

Function (6.73) describes the averaged or smoothened friction. Its graph is 

shown in Fig. 6.20. 

v

a

v

a

v

a

v

a

Fig. 6.20. The effective friction force in the presence of the strong HF excitation 

This function is very interesting compared to the original dry friction. It re-

mains limited if the relative velocity is sufficiently large, but the discontinuity at 

zero has disappeared. It is replaced by some kind of a continuous function and 

even more – the effective friction can be linearized for the sufficiently small rela-

tive velocities. The effective damping depends strongly on the intensity of the HF 

excitation. It decreases with the increasing excitation’s intensity. 

2
eff

v
v a

a
(6.75)

The only stationary solution to (6.74) is 0v , because we have considered a 

system without any external force and with symmetric friction. If we add some 

force (for example for an inclined plane) we would obtain some non trivial veloc-

ity. The external force and the effective friction would balance each other in this 

case.
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The same result can be easily obtained if we apply the equations of slow mo-

tions (6.59) to our system (6.65) rewritten as follows: 

2 sinfrx x g a t (6.76)

Using the signs from the previous section we get the final equation directly: 

1 1

; sin ; cos

0; cos

cos

fr

d i fr fr

fr

F x g a U a

V V x g x a g

x x a g

(6.77)

6.5.2 Slow Translation of a Particle on the Elliptically Vibrating Plane 

HF excitation can also set the particle in motion even if the friction law is com-

pletely symmetric. Let us consider the same mass on the plane but excite the plane 

elliptically (like in the section 6.2) in order to illustrate this statement (Fig. 6.21).  

g
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sina t

g
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sina t

Fig. 6.21. A mass on the elliptically excited plane 

The equations governing the motion of the mass can be written as follows: 

2

2

sin

sin

mx N x ma t

N mg ma t
(6.78)

These equations express the fact that the friction force is proportional to the 

normal reaction force. In our case the normal force is influenced by the vertical 

acceleration of the plane. It is sensible to introduce the fast undimensioned time 

and two undimensioned parameters as follows: 

2 21 ; 1k g a O a a O (6.79)

We can rewrite (6.78) using these parameters and taking into account that stick-

ing is not possible in presence of the strong HF excitation: 
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2 2 2sin sgn sinx a k t x a t (6.80)

We assume that the horizontal amplitude a is the small parameter and trans-

form this equation using the same approach as in the previous example: 

2 2

2 2

1

sin sgn ; sin

sin sgn cos

F a k x a

x a k x a
(6.81)

This system can be averaged. One can easily calculate the following integrals: 

2

sin sgn cos 0

0, 1
cos sgn cos

sin arccos , 1

v

v
v v

v v

(6.82)

The averaged equations can be written as follows: 

1 1

1 sin

x a v

v a k v v
(6.83)

It is obvious that a stationary solution is impossible if 1 1v . If  1 1v , then 

the stationary transportation velocity of the mass is governed by the following 

equation:

2 2
1 arccos sin sin arccos 0st stk v v (6.84)

In general, this equation must be solved numerically. However in many cases 

the following approximation may be useful. We can introduce a new variable in-

stead of the stationary velocity: 

cos

sin
sin

2

stv

k

(6.85)

The equation for  can be solved if we assume that its solution is close to 

2 . Then we can write: 
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32

sin
cos 0

2

sin 1 sin
1 cos 1

2 2

k

k k

(6.86)

Finally we obtain an approximate relationship for the velocity of stationary 

transportation of the mass on the elliptically HF excited plane: 

2
3 2

22
sin 1 sin

3st

a a a
x

g g
(6.87)

It is interesting that the stationary transportation velocity does not depend on 

the friction coefficient. In Chapter 2 we have investigated a similar system. The 

transportation of the mass was caused by the asymmetry of the friction and the 

corresponding velocity was proportional to the asymmetry. In our case the reason 

for the transportation is the asymmetry of the excitation. It presses the mass to-

wards the plane when it moves backwards and reduces the pressure in the phases, 

when the mass moves forwards. These influences result on the average in a steady 

state transportation. There are many machines based on this principle. First of all 

vibrating conveyors and sieves are used in the processing of bulk materials.  

A comparison between the approximate solution (6.87) and the results of nu-

meric simulations are shown in Fig. 6.22 for the following parameter values: 

10; 50; 0.002; 0.01; 0.1g a a . The accuracy of the ap-

proximate result is acceptable. 
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Fig. 6.22. Transportation of a particle on the elliptically vibrating plane: the averaged ve-

locity 
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6.5.3 Quenching of the Self Excited Oscillations Caused by the 

Negative Friction Gradient 

The ability of the HF excitation to smoothen the discontinuity in dry friction 

and to replace it by a continuous and monotonously increasing nonlinear damping 

can be used in order to quench the self excited oscillations caused  for example by 

the negative friction gradient. We are going to illustrate this statement by an ex-

ample which was discussed in [121]. Consider the classical “mass-on-moving-

belt” as it was discussed in Chapter 2.  How would the behavior change if we ap-

ply a strong tangential HF excitation? The corresponding system is shown in Fig. 

6.23. 

v

sina t

bvv

sina t

b

Fig. 6.23. The mass-on-moving-belt with a strong HF excitation 

The equations of motion in the presence of the HF excitation can be written as 

follows (we use the model of friction which we have applied in the Chapter 2): 

2

3

1 3

2 sin

sgn

1, 1

b

b s b b b

u u u u v a t

u v u v k u v k u v

a O

(6.88)

 The system (6.88) can be transformed to the basic form (6.47) if we use the 

following notation: 

; sinF u h u a (6.89)

The equation governing the slow motions of the HF excited mass-on-moving-

belt can be obtained immediately: 

cos ; 0;

cos

d

eff b

U a V

u u u u v a
(6.90)
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The only difficulty is to calculate the average describing the effective friction 

characteristic. Taking (6.88) and (6.73) into account one can obtain the following 

result:

2 2

3

3

2

sgn , for  

0, for  

eff b b

b
s b b

b

u u v k a u v

u v
u v u v a

a

u v a

(6.91)

The effective friction characteristic is displayed in Fig. 6.24. 

eff

bu v

0.3

0a
0.6 0.9

s

s

eff

bu v

0.3

0a
0.6 0.9

s

s

Fig. 6.24. Effective smoothed friction for different excitation’s intensities 

The result of the HF excitation is the smoothed friction characteristics. The ef-

fective friction is an increasing function of the relative velocity in the vicinity of 

zero, i.e. no self excitation is possible if the relative velocity is sufficiently small. 

On the other hand the minimum of the effective friction moves towards smaller 

relative velocities. The self-excitation remains possible only in the reduced veloc-

ity range 

2 21

3

1

3 2

eff

b m

k
a u v v a

k
(6.92)

Here
eff

mv is the relative velocity corresponding to the minimum of the effective 

friction coefficient. The self-excitation is impossible if 

1

3

2

9

eff

m

k
a v a

k
(6.93)
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The amplitude of the corresponding limit cycle can be significantly reduced, 

even if this inequality is not fulfilled and the self-excitation takes place. Figure 

6.25 shows a representative simulation with continuously increasing amplitude of 

the HF excitation ( 100 ).
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Fig. 6.25. Quenching of the friction induced oscillations due to the strong HF excitation 

The excitation intensity is negligible at the beginning. The stable limit cycle es-

tablishes itself after a short transient process. The increasing excitation intensity at 

the time point about t=200 quenches the self-excited oscillations completely. The 

thick line at the end of the plot shows the small oscillations corresponding to the 

HF excitation. Figure 6.26 shows how the stationary oscillation’s amplitude de-

pends on the belt’s velocity for different intensities of the HF excitation. The 

simulations were performed for 1 30.2; 0.1; 0.04s k k .

The increasing excitation’s intensity reduces both the instability area and the 

amplitude of the stable limit cycle. The whole velocities range remains stable for 

0.9a .

The described effect seems to be an efficient way if it is necessary to avoid the 

self-excited oscillations induced by the negative friction gradient. However it is 

coupled with a principle disadvantage which significantly reduces the applica-

tion’s area. The described quenching mechanism is based on the smoothening ef-

fect of the HF excitation, i.e. on the transformation of the dry friction in an effec-

tive nonlinear damping. The main feature of the dry friction is sticking. This 

feature is not possible in the strongly excited system.  
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This quenching mechanism is not useful as the consequence in all the sys-

tems in which the sticking is necessary.  
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Fig. 6.26. Stationary amplitude of the limit cycle for different excitation intensities 

Brakes and dry friction clutches are the typical examples for the systems in 

which this mechanism can be hardly used because their functionality is based on 

the sticking and the disturbing oscillations or noise occur at very small relative ve-

locities just before sticking. 

The HF excitation can be an interesting technical alternative to lubrication in 

the applications for which the sticking does not play such an important role (like 

sliding elements in control units, production machines) and the dry friction is only 

an unavoidable companion. 

6.6. On the Misbehavior of the “Optimally” Controlled 
Pendulum under the Influence of the HF Excitation 

The last example in this chapter deals with the behavior of a control system under 

the influence of the HF excitation. This problem was investigated by the author 

together with J. J. Thomsen. 

6.6.1 Description of the Problem, Equations Governing the 

Mechanical Subsystem  

Figure 6.27 shows the standard system normally used to test control algorithms. 

It contains a cart used to balance a pendulum in the up-pointing position against 

the gravitation force.  

,

.

.

.

.

. . . .
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The system state can be described through two degrees of freedom – the posi-

tion of the cart S  and pendulum angle  as observed from the rigid platform. 

The cart has the mass M  and the linear damping coefficient d . The pendulum 

has the mass m  and the torsion inertia J  about its center of gravity at distance 

L  from the loss free hinge. The system’s reaction to perturbations is governed by 

a feedback control force , , ,U U S S . The rigid platform can be excited 

kinematically relative to the fixed inertial frame. 

U

S

sinA t

sinB t

U

S

sinA t

sinB t

Fig. 6.27. Inverted pendulum balanced by a moving cart 

The system’s motion is governed by the following equations: 

2 2

2 2

2 cos sin sin

1 sin sin cos sin cos

s s u a t

b t s a t
(6.94)

The following undimensioned variables and parameters are introduced in these 

equations (cf. Fig. 6.27): 

0 0 2 2

0

0

; ; 1 ; ;
( )

; ; ; 1;

g J U
t t l L u

l mL M m l

S A B m L
s a b

l l l M m l

d

dt

(6.95)
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6.6.2 The Optimal State-Feedback Control 

; ; ; 0z s s , and return it back in case of any perturbations due to ini-

tial conditions or external forces. It is designed as an optimal linear regulator, bas-

ing its actions on a linearized model of the unforced system to be controlled, and 

on measurements – assumed here to be error- and noise-free – of instantaneous 

values of the state z , i.e., u u z . The linearized model of the unforced sys-

tem can be obtained from (6.94) if we ignore the excitation terms, i.e. 

0; 0a b , and linearize the equations for small values of  and  in order 

to obtain a system of linear first order differential equations in the state space 

form: 

0 1 0 0 0

2 1
0 0

1 1 1
;

0 0 0 1 0

2 1 1
0 0

1 1 1

z z uA B

A B
(6.96)

The control law u z  for the optimal linear state-feedback controller is: 

Tu k z (6.97)

Here the optimal gain vector k is chosen in order to minimize a weighted sum 

of integrated control error and control effort: 

2

0

minTJ z z Ru z dtQ (6.98)

Here Q and R are positive definite weighting factors. These factors are chosen 

to reflect a proper tradeoff between the conflicting requirements of quickly reduc-

ing the set point error to a small value (large / RQ ), without expending exces-

sively large control power (small / RQ ).

The optimal solution for k can be found in many texts on control theory (see 

for example [67]): 

1 Tk R B S (6.99)

The  control u in (6.94) is  intended to keep the  system at zero state 
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Matrix S  here is the solution to the algebraic Riccati’s equation: 

1 0T TRA S SA SBB S Q (6.100)

For given values of , , , RA B Q , the Riccati matrix S can be easily computed, 

e.g., using the built-function LQR in MATLAB [14] . 

Thus, for given damping and mass ratio of the physical system, A and B is 

computed using (6.96), and with chosen Q and R , the Riccati matrix is given by 

the solution to (6.100). Then k is calculated using (6.99), and the control force 

u can be calculated using (6.97) for any state z .

The optimal control law can be represented explicitly as follows: 

1 2 3 4u k s k s k k (6.101)

Thus the controller simply has the effect of adding positive linear stiffness and 

damping to the uncontrolled system. The control coefficients are large compared 

to the parameters of the mechanical part of the system (6.94) and guarantee the 

stability of the set point 0z  with respect to small perturbations. 

6.6.3 System’s Behavior in Presence of the Strong HF Excitation: 

Numeric Results 

The question then is how the controlled system behaves in the presence of 

small but rapid oscillations of the supporting platform, i.e. if 0a and 0b  in 

(6.94). It was already discussed above that the elliptic HF-excitation can lean the 

pendulum from its stable equilibrium position. The control system however is not 

limited in its power. Consequently, one might expect that the performance of the 

controller would be only slightly affected by the HF-excitation. The set point 

0z  would still remain stable, though with a small overlay of high-frequency 

(HF) oscillations corresponding to the excitation, or another stable equilibrium 

point would appear deviating slightly from 0z . This deviation should decrease 

with the increasing control effort.

Numerical simulations however do not confirm these expectations (see Fig. 

6.28). The control system works perfectly if only vertical or only horizontal exci-

tation is present. It stabilizes the pendulum in the up-pointing position and moves 

the cart to the zero point. The motion of the pendulum and the cart is overlaid by 

small HF-oscillations but on the average the control system fulfills its objective. 

The situation changes completely if vertical and horizontal oscillations are applied 

simultaneously. The control system still stabilizes the cart and the pendulum, but 

the final averaged cart position becomes wrong and the pendulum is stabilized 

with some permanent tilt (see Fig. 6.29). An attempt to reduce the permanent error 

through increased control effort does not help at all. The amplified control system 

amplifies the misbehavior. This is the effect we are going to discuss in this sec-

tion.
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Fig. 6.28. Numeric simulations of the cart and the pendulum; (a) – the controlled system 

without HF-excitation; (b) – the system with the horizontal HF-excitation; (c) – the system 

with vertical HF-excitation; the dotted line shows the cart’s position; the solid line shows 

the pendulum’s tilt 
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Fig. 6.29. Numeric simulations of the cart and the pendulum in the presence of the overlaid 

vertical and horizontal HF-excitations; (a) – the LQR optimal controlled system; (b) – the 

same system with amplified control effort. The dotted line shows the cart’s position; the 

solid line shows the pendulum’s tilt 

6.6.4 Transformation of the System to the Form Suitable for 

Averaging 

The objective of the following discussion is to explain the strange effect and to 

obtain the approximate analytic predictions for the stationary cart’s position and 

pendulum’s tilt. The system’s motion is governed by the following equations: 
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2

1 2 3 4

2

1 2 3 4

sin

cos 1 sin sin

s k s k s k k a t

k s k s k k b t
(6.102)

The described effect remains if one simulates the linearized system instead of 

(6.102). That’s why we are going to discuss the linearized variant too: 

2

1 2 3 4

2

1 2 3 4

sin

1 sin

s k s k s k k a t

k s k s k k b t
(6.103)

Let us notice one important difference between the controlled system 

(6.103) and usual mechanical systems. This difference is the high damping 

level which is typical for any optimal control law. The reason for the strong 

damping is the objective to avoid the unnecessary oscillations and to lead 

the controlled system to its final position as fast as possible. This fact is the 

main difference (in the frame of this chapter) between the controlled sys-

tems and pure mechanical systems which are usually weakly damped.  

Let us see to which form this system can be transformed and what kind of aver-

aging would be appropriate for this form. We introduce firstly the fast time and 

the corresponding small parameter: 

2 4 1 3

2 4 1 3

1
; ; 1;

1 ; 1

sin

sin 1

d
t

dt

a a O b b O

s p

q

p k p k q a k s k

q k p k q b k s k

(6.104)

It is easy to notice, that the first two variables are slow, but the third and the 

forth variables are fast. The peculiarity of this system is that it is possible to intro-

duce the third slow variable. The reason is the very special structure of the control 

applied only to the cart. If we add the third equation to the forth one, we obtain in 

the unperturbed case 0 a simple relationship: 

0 0 0

0

sin sin

0

p q a b

(6.105)
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So it is sensible to replace for example p through a new slow variable x :

cos cosx p q a b (6.106)

The corresponding transformed form for (6.104) is: 

2 4 2

1 3

cos cos

cos

cos cos

sin 1

s x q a b

q

x bq

q k k q k x a b

b t k s k

(6.107)

The first three equations now have the standard form, but the last one contains 

both large oscillating terms, and the large linear term, expressing strong damping 

due to optimal control. The oscillating terms can be eliminated as follows. Let us 

consider the unperturbed system to (6.107) and try to find its particular periodic 

solution:

0 1 0 2 3

0 4 5

sin cos

sin cos

q x
(6.108)

Inserting (6.108) into (6.107) and balancing terms with the same trigonometric 

functions one obtains the following expressions for the coefficients: 

2
1

2 4

2 2 42
2 3 2 4 22 2

2 4 2 4

2 2 44
4 5 2 4 42 2

2 4 2 4

;
1 1

1
;

1 1

k

k k

k k k ak a
k k

k k k k

k k kk b
k k b b

k k k k

(6.109)

Now we can apply to (6.107) the following transformation: 

1

2 3 4 5sin cos sin cos

q x y q

q
(6.110)

In the new variables system (6.107) takes it final form: 
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1

1

1

2 4 1 3

1 4 5

cos cos

cos

1

sin cos

s x x y q a b

x y q

x b x y q

y k k y k s k

x y q

(6.111)

This is the form, which is typical for systems with strong damping. The corre-

sponding averaging procedure was considered in Chapter 4. It can be applied di-

rectly to this system if the coefficient 2 4k k  is positive. It is normally the 

case, because it is also the necessary condition for the stability of the control algo-

rithm.  

6.6.5 The First Order Approximation; the Stationary Pendulum’s Tilt 

Two important properties of this system can be noticed here already. The vari-

able y is a slave due to the strong damping coefficients 2k and 4k . It means that 

at least in the first order approximation the last equation in (6.111) will not give 

any additional information except the obvious result: y is small. The second im-

portant fact is that the only nontrivial term comes from the averaging of the prod-

uct cosq . This term describes the reaction of the control system on the 

HF-excitation. Relationships (6.109) show that this reaction is determined by the 

strong damping terms in the control system. 

Let us start with the first order approximation. The variables in the first ap-

proximation are indicated with index 1. 

1 1 1

1 1

1 1

1 2 4 1

1

cos

s x

x

x b q

y k k y

(6.112)

The only average we have to calculate is 

2 3 5 1

1 1 1
cos sin cos

2 2 2
q (6.113)
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Substituting (6.113) into (6.112) finally we get equations of the first order ap-

proximation: 

1 1 1

1 1 1

1 1 2 3 5 1

1 2 4 1

1

sin cos
2

s x

x

b
x

y k k y

(6.114)

Stationary solution to this system can be found if we put its right hand sides to 

zero. We get the stationary value for the pendulum’s tilt 

2 3
1

5

2 2 4

2 2

2 4 2 2 4

sin cos

2

sin cos

2 1 1

b
b

k ab k k

k k b k k k

(6.115)

Unfortunately we do not get any information about the stationary cart position 

in the first approximation. That’s why we need the second one. The corresponding 

procedure was formulated in Chapter 4. Let us shortly repeat these results. 

6.6.6 The Second Order Approximation; the Stationary Position of the 

Cart 

Consider a system containing both slow master variables and strongly damped 

slaves:

0 0

, ,

, ,

0 ; 0

x X x y t

y ky Y x y t

x x y y

(6.116)

The second order approximation to this system is given by the following rela-

tionships: 
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2 2

1 2

2

0 0

1 1 1

0

2 1

0 0

,0,

0 ; 0

,0, ; ,0,

1
,0,

t

y y

O

k Y t O

x y

X t u X d

X X
u Y t

x k y

(6.117)

Now we are going to apply this approach to the system (6.111). The first step is 

to calculate the functions u :

2 3 4

5

2 3 4 5

1 2 3

4 5

cos sin cos

sin

cos sin cos sin

1 1
sin cos 2 sin 2

4 4

1 1
cos 2 2 sin 2 2

4 4

s

x

u a

b

u

u b x b b

b b

(6.118)

Besides that we need the following derivatives: 

1 1 1

0; 0; 0

1 ; ; cos

s x

s x

X X X

s s s

X X X
b

x x x

(6.119)

4 5

4 5

5 4 5

sin cos

sin cos

1 1 1
1 sin 2 2 cos 2 2

2 2 2

sX
b

X

X
b b b

(6.120)
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1; 1; coss xX X X
b

y y y
(6.121)

The function Y is given as follows: 

1 3 1 4 51 sin cosY k s k x q (6.122)

Now we can calculate the functions 2 2ands :

2

2 4

2

2 4

1

1

s s s s
s s x

s x

X X X X
u u u Y

s x k k y

X X X X
u u u Y

s x k k y

(6.123)

The result is 

2 2 4 3 5 3 4 2 5

2 2

4 2 1 3 4 5 2

2 4

3 4 2 5 2 4 3 5

2 4

2 2 4 3 5 3 4 2 5

2 2

1 3 4 5 2

2 4

1 1
sin cos

2 2

1 1 1
1

2 2

1 1 1
sin cos

2 2

1 1
sin cos

2 2

1 1
1

2

s b b

b k s k
k k

k k

k s k
k k

3 4 2 5 2 4 3 5

2 4

1 1 1
sin cos

2 2k k

(6.124)

Finally we obtain the equations of the second order approximation (only equa-

tions for s and  are interesting now): 

2

2 1 2 2

2

2 1 2 2

1 ss x

x
(6.125)
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If we are interested in the stationary solution we obtain the following relation-

ship

2 2

1

x (6.126)

This result can be inserted together with 1  into the following equation 

1 2 2 1 1 2 2 11 , ,ss s (6.127)

It’s a linear equation with respect to 2s and its solution is quite simple 

3
2 1

1

k
s

k
(6.128)

Equations (6.115) and (6.128) give us the required stationary values for the 

pendulum’s tilt and the cart’s displacement.  

6.6.7 Discussion of the Results 

Let us discuss the obtained results and compare them with the numeric simula-

tions (see Fig. 6.30). 
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Fig. 6.30. System’s performance as a function of the excitation’s parameters; solid lines - 

analytic predictions; dots – numeric simulation of the linearized system 

Fig. 6.30 demonstrates the excellent accuracy of the analytic prediction. 
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As appears from (6.115), a nonzero value for 1 and 2s can occur only with 

bi-directional HF excitation, i.e. when 0ab . This result is already known from 

the analysis of a simple pendulum with the HF-excited suspension point (compare 

the stationary pendulum bias with the relationship (6.30)). 

Equation (6.128) reveals that when 3 1 0k k then 2 1 0s , that is: with 

the controller adding positive stiffness to both the cart and the pendulum part of 

the system, the cart and the pendulum will be biased in opposite directions. This is 

a consequence of the functional (6.98) which has to be minimized by the optimal 

controller, including the choice of weighting constants Q and R . It has nothing 

to do with the HF excitation, but merely reflects that at equilibrium 0s ,

the functional (6.98) will be minimal for 
22

1 30 0u z k s k ,

which gives the relationship (6.128). 

The origin of the bias in the pendulum’s motions , is the asymmetric term 

cosq , which on certain conditions is nonzero even when the pendulum 

i
s vertical. This term generally does not vanish in the presence of bi-directional 

HF-excitation, 0ab , and therefore 1 0  is not an equilibrium. 

It is further evident from (6.115) that the primary source of the bias lies in the 

part of the controller that is intended to damp out oscillations about the equilib-

rium for the cart at 0s . If 2 0k , then the right-hand side of (6.115) van-

i
shes, and 1 0  becomes a stationary quasi-equilibrium.  

Another important point is the dependency of the stationary bias from the phase 

difference between the vertical and the horizontal excitation’s components. This 

fact allows changing the system’s equilibrium without any additional energy only 

by changing the phase difference. At a certain phase difference the up-pointing 

pendulum’s position becomes the stable equilibrium as if the system would not be 

excited at all. 

0 2 4arctan k k (6.129)

The control error in the presence of HF excitation can be explained by the 

asymmetric forces induced by the elliptic HF-excitation. The vertical components 

of these forces are transmitted to the system directly by the platform, while the 

horizontal components are transferred primarily by the damping force 2k s deter-

mined by the controller. The only other way how the horizontal components con-

tributing to the asymmetry can be transferred to the system is by the stiffness term 

1k s ; however, at high frequencies the damping term is much stronger than the 

stiffness term, i.e. the influence of the terms depending on the velocities is domi-

nant.
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6.6.8 A Robust Control with Averaging Observer 

This cognition enables analysis to find out how the proper behaviour of the sys-

tem can be restored in presence of the HF-excitation. The simplest way is to pre-

vent HF-excitation from coming into control system by means of a “slow” ob-

server. Under the slow observer we would understand some kind of a transformer 

between the real values of some state variables and the input values for the control 

system. The simplest example for the slow observer (but surely not the only one) 

is the “averaging” observer or the low pass filter if we use the signal processing 

language. In our case we have to filter the velocity signals only. It can be done by 

an elementary second order filter used at the entrance of the control algorithm. In-

stead of the real cart’s and pendulum’s velocities we use the filtered ones. Instead 

of the original control (6.101) a new one can be applied: 

1 2 3 1

1 1

2 2

1 1

2 2

ˆ

ˆ ˆ

ˆ

ˆ ˆ

s

s s s s s

s s s s

u k s k v k k v

T v v k v

T v v k s

T v v k v

T v v k

(6.130)

This filter is surely not optimal one, neither is the corresponding control. But it 

is good enough in order to demonstrate the efficiency of the averaging observer 

(see Fig. 6.31) 
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Fig. 6.31. Simulation results for the control based on the filtered estimates for the veloci-

ties; (a) – the efficiency of filtering; thin line – the cart’s velocity; thick line – the filtered 

cart’s velocity; (b) – the performance of the control system – both the cart and the pendu-

lum are rapidly stabilized in the right positions 

It would not be difficult to design the corresponding optimal filter and optimal 

control applying the same methods we have used for the initial control design, but 

it is not the objective of our analysis. The only disadvantage of the averaging ob-

server is obvious. The control system looses a lot of information about the sys-

tem’s state, which cannot be used if there are some additional functions. The only 

sensible approach is to distinguish between observations used to ensure the stable 
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and robust behaviour of the controlled object and perhaps the same observations 

used for other purposes. 
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The basic effects of the strong HF excitation were discussed in the previous 

chapter. The exceptional role of the large oscillating terms was also mentioned in 

paragraph 6.4 but this case was excluded from our analysis. The technical reason 

for this restriction is quite simple. Particular systems with strong excitation com-

monly occur in various applications. Usually these systems are used if we are in-

terested in analyzing motions of a machine where the inertia of its housing is sig-

nificantly larger than the inertia of its moving parts. 

If however the mass or inertia of the mechanism’s moving parts is not small (as 

in the case for many modern machines like cranks mechanisms or vane pumps), 

equations of motion containing fast oscillating inertia coefficients will be ob-

tained. These equations contain large, fast oscillating terms depending not only on 

the generalized coordinates but also on the system’s generalized velocities. 

Another example of systems with strong excitation dependent upon the first de-

rivative of the unknown function appears if we investigate vibrations or wave 

propagation in inhomogeneous media. For example, the longitudinal waves in a 

rod with a periodic or quasi-periodic structure. In this case the typical equations 

with strong excitation of general form appear naturally with respect to the spatial 

coordinates. Equations with the slowly modulated HF excitation are typical for 

this group of applications. 

The general asymptotic procedure will be established in this chapter. It is suit-

able for analyzing strongly excited systems and those in which the periodic HF 

excitation depends on velocity. This analysis is illustrated by two mathematical 

examples highlighting the principal differences between the effect of the posi-

tional HF excitation and the effect of the terms depending on velocity. The re-

sponse of an elementary nonlinear system subjected to strong external and para-

metric (depending on the velocity) excitation, is used to demonstrate the effects in 

a mechanical application. The same example is used to demonstrate how the per-

formed analysis can be generalized for systems with very strong external excita-

tion. Dynamics of a double pendulum with a fast rotating second link is consid-

ered as an example demonstrating some technical applications of the discussed 

methods.  
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7.1 Systems with Strong Excitation. General Analysis 

The general mathematical approach for asymptotic analysis of mechanical systems 

with strong general HF excitation can be formulated using the following theorem 

(the strict mathematical formulation and the corresponding proof is given in Ap-

pendix VIII): 

Consider a system  

0 00 0

( , , , ) ( , , , )

; ; .
t t

x F x x t x x t

x x x v t
(7.1)

Suppose: 

1. x is a n-dimensional vector of the system’s generalized coordinates. 

2. Function F is continuous together with its first partial derivatives with re-

spect to all arguments. 

3. Function is continuous together with its second partial derivatives with re-

spect to all arguments. 

4. All the functions are 2 -periodic with respect to ,  means averaging 

with respect to , 1 is the large parameter. 

5. The general 2 - periodic with respect to  bounded solution to the system of 

n first order differential equations is known: 

( , , , ), ( , , ) , , ,
u

X u t u X t X u U X X t (7.2)

 It satisfies the Lipschitz conditions together with its first partial derivatives with 

respect to X and X .

Consider a system of ordinary differential equation, which does not contain the 

fast time  alongside (7.1): 

0 00 0, 00

, , , , ;

,
t tt

M X X t X V X X t

X x X v
(7.3)

Here
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0

, , ;

, , , , ,

T

T

T

U
M X X t W U X d

X

V X X t W F X U t

U U
W X

X X t

(7.4)

W  is the fundamental matrix of solutions for the linear homogeneous system 

; det 0

T

TW
W W

x
(7.5)

Then solutions to (7.1) and (7.3) are asymptotically close to each other for the 

time interval 1t O O .

We are going to demonstrate the origins of this result by applying formally the 

multiple scales technique. The analysis based on the generalized averaging leads 

to the mathematical proof of this theorem which can be found in Appendix VIII. 

Let us start with the multiple scales and convert from the system of ordinary 

differential equations (7.1) to a system with partial derivatives and two independ-

ent variables t and :

2 2 2
2

2 2
2 , , ,

, , ,

F t
t t t

t
t

(7.6)

The relationship between (7.1) and (7.6) is given by the following condition: If 

),(t is a solution to the equation (7.6), then this solution taken along the 

straight line t , i.e. ),( ttx  is a solution to the equation (7.1). In 

other words, system (7.6) is more general than the equation (7.1). It gives us some 

freedom to choose the boundary conditions for this system. The only restriction is 

that the straight line t should be in the inner part of the considered area. 

We require ),(t being a 2 - periodic function of and try to find ),(t

as a formal asymptotic expansion in terms of the small parameter 1 :

2

0 1 2( , ) ( , ) ( , ) ( , )t t t t (7.7)

Substituting this expansion into (7.6) and balancing the terms with equal orders 

of  we obtain: 
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,0:
2

0

2
2

(7.8)

22
1 0 0 01 1

02
: 2 , , , ,t

t t
(7.9)

22 2
0 02 1 1 2

12 2
: 2 F

t t x x t
(7.10)

The last step must be justified, because the second argument of all the functions 

on the right hand side of the equations is: 

0 01

t
(7.11)

This expression can take values of the magnitude order of the large parameter 

. So it can create terms of any order in our equations depending on how de-

pends on x . If we require , as usual, being a bounded function in the vicinity of 

the solution to the averaged system, we reduce the problem to the a posteriori

check of our assumptions concerning the magnitude order of x  in the vicinity of 

the found solution. 

In the considered case of strong excitation the problem is insignificant. The 

general solution to the equation (7.8) has the following form: 

0 ( , ) ( ) ( )t X t A t (7.12)

According to the periodicity of 0 , we get 0A t . Hence, )(0 tX . It 

depends only on the slow time t  and the large terms in the equations (7.9) and 

(7.10) disappear automatically. However, it is just this problem that prevents a 

general analysis of systems with very strong excitation. 

The objective of the following analysis is to obtain differential equations gov-

erning the still unknown function X t . These equations should not contain the 

fast time .

The equation (7.9) after substituting in it the solution of the equation (7.8) takes 

the form: 

2

1 1

2
, , ,X X t (7.13)
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It is natural to call this equation “The Equation of Fast Motion”. It is a differen-

tial equation with only partial derivatives with respect to . So we can take 

XX ,  and t  to be constant parameters while solving (7.13). Referring to the fifth 

condition of the Theorem (cf. (7.2)) we can rewrite the solution of the equation 

(7.13) as follows: 

1 1

0

( , ) ( );t X t U X d (7.14)

The new unknown function )(1 tX  is a small slow correction to the main slow 

part of the solution X t . The system (7.2) is significantly simpler than the 

original system (7.1), because its order is halved and we can take all the functions 

of slow time t  to be constant. In other words we are not interested in the slow 

evolution of the system here but only in its high frequency oscillations. 

Let us move on now to the equation (7.10) which can be now rewritten as fol-

lows:

2

1
1

v
v F X

x x t
(7.15)

The new unknown function was introduced here: 

2 1v
t

(7.16)

This is a system of n  first order linear inhomogeneous equations with periodic 

coefficients. As it is known from the general theory of linear systems with peri-

odic coefficients, the projections of the inhomogeneous parts of the equations on 

the solutions of the system conjugated to the homogeneous part of the original one 

must vanish in order the periodic solutions to (7.15) exist. (A reference to the clas-

sical work of Poincarè [98] seems to be in order here and to underscore the close 

relationship of Poincarè’s method to that of multiple scales, which is in this case a 

procedure to find a periodic solution with respect to (7.6) with a non-isolated 

unperturbed solution (7.12). 

This necessary condition takes the following form: 

2

1
1 0TW F X

x t
(7.17)

The matrix W  is defined as the fundamental matrix of the homogeneous sys-

tem (7.5). The equation (7.17) contains seemingly two unknown functions X and
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1X . This statement becomes clear if we replace 1 by its explicit form (7.14). 

Then (7.17) can be rewritten as follows: 

2

1 0TW F X X
x x t

(7.18)

Let us show that the term which depends on the 1X  is equal to zero. In other 

words we are going to prove the following identity: 

0TW
x

(7.19)

Let us use the equation (7.2) written as an identity: 

, , , , , ,
u

X u X X t t (7.20)

Deriving it with respect to X one obtains: 

2u u

X X X X
(7.21)

Hence we can rewrite (7.19) as follows: 

2
T T Tu u

W W W
X X X X

(7.22)

Due to the periodicity of W and u we can write: 

22 2

0

2 2

00

2

0

1

2

1 1

2 2

1

2

T T

T
T

T T

u u
W W d

X X

Wu u
W d

X X

u u
W d W

X X X X

(7.23)

Substituting (7.23) into (7.22) we obtain the required identity (7.19). 

Due to this result we can simplify the equation (7.17) as follows: 
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2
T TW X W F

x t
(7.24)

Lastly, function depends on t  both directly and indirectly through func-

tions X t and )(tX . Under t we understand here the “full” partial deriva-

tive with respect to t . Taking this into account and using the “partial” partial de-

rivatives we obtain the final explicit form of the equation (7.24): 

2

T T

U U U
U X X X X

t t X X

U U U
W X W F X

X x t X

(7.25)

This is exactly the equation (7.4) required in the theorem. Equation (7.4) does 

not contain the fast time, and determines the slow evolution of the solutions to the 

original system (7.1). That’s why they could be called “The Equations of Slow 

Motion”. The Function ),,( tXXV  can be naturally called the vibrational force 

and the matrix ),,( tXXM  can be interpreted as a matrix of the system’s “effec-

tive mass with respect to slow motions”. This matrix depends on the solution of 

the equations of fast motion, i.e. on the amplitude of the fast excitation. 

If the function  does not depend on x , system (7.3),(7.4) goes over into 

equations, well known, for example, from the works of Blekhman [20]: 

X F
x

(7.26)

This is nothing different but the equation (6.58) which was already obtained in 

the section 6.4 with the help of the standard averaging. 

An interesting question is, can the general result (7.4) be obtained by the stan-

dard averaging or by some modified averaging? It was already shown in the pre-

vious chapter that the standard approach based on the variation of the integrals of 

the unperturbed system, does not help to obtain the general relationships similar to 

(7.26). We know however, that the solution we are interested in can be represented 

at the coordinates’ level, as a superposition of the small fast oscillations and large 

slow evolutional motions. At the velocities’ level the fast oscillations and the slow 

evolution are of the same order of magnitude.  

The generalized averaging procedure based on this fact can be found in Appen-

dix VIII. It leads directly to the mathematical proof of the formal equations (7.3), 

(7.4).

Let us give two mathematical examples illustrating the effect of the fast oscil-

lating terms depending on the velocities. 
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7.2 Two Mathematical Examples of Systems with Strong 
Excitation

Now we are going to consider two mathematical examples of systems with strong 

excitation, illustrating the main qualitative difference between the systems with 

strong terms depending on the velocities (7.1) and systems in which these terms 

depend only on the co-ordinates. 

7.2.1 A System with One Degree of Freedom and Strong HF 

Excitation Depending on the Velocity 

Firstly, following [34] we consider a system with one degree of freedom. Sec-

ondly an example of a system with two degrees of freedom is analyzed. It is nec-

essary to emphasize that these examples are purely mathematical. Further me-

chanical examples are discussed in paragraph 7.3. 

As in the first example we are going to analyze the following equation: 

cos( )x x x a x t (7.27)

Let us assume that a and  are both of the magnitude order 1 and 1, is 

the large parameter. Then according to our designations 

; cosF x x ax (7.28)

 The equation of fast motion takes the form: 

cos
u

au
(7.29)

Its periodic solution satisfying the average condition (7.2) is: 

sin

0

aX
u e

I a

(7.30)

Here 0I a  is the modified Bessel’s function of 0 -order:

2

sin

0

0

1
( )

2

aI a e d
(7.31)

The linear homogeneous system (4.2.6) can be written down as follows: 

* cos
W

a W
(7.32)
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Its periodic solution is: 

sin

* *, 0aW e W (7.33)

Substituting these expressions into (7.4) and averaging the corresponding 

terms, one obtains the following equation of slow motion: 

2

0 ( ) 0X X I a X (7.34)

Equation (7.34) is a very simple linear differential equation with constant coef-

ficients. Its solution, together with the fast component (7.30) gives us the ap-

proximate solution to (7.27).  

Let us demonstrate how the same result can be obtained by the standard averag-

ing based on the variation of the integrals of the unperturbed equations. Convert-

ing to the fast time as the independent variable one can rewrite (7.27) as follows: 

cos

x v

v v x av

(7.35)

The corresponding unperturbed system is 

0

0 0

0

cos

x

v av

(7.36)

Its general solution is periodic: 

sin

0 0 0 0; ;ax const v z e z const (7.37)

We can consider (7.37) as the variable transformation: 

sinav ze (7.38)

The following equations govern the new variables: 

sin

sin

a

a

x ze

z z xe

(7.39)

This is a system in the standard form. It can be averaged directly. The result is: 

1 1 0

1 1 1 0

x z I a

z z x I a

(7.40)

Converting to a second order differential equation and returning back to the 

slow time as an independent variable one obtains the equation (7.34). 

A comparison of the analytic solution with the numeric one can be found in 

Fig. 7.1 and Fig. 7.2 for two different values of the large parameter ( = 50 in  
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Fig.7.1; = 10 in Fig.7.2). In both cases the calculations were performed for the 

following parameters’ values: 00, 1 (1) 1,266a I
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Fig. 7.1. Comparison between analytic (thin line) and numeric (thick line)  

solutions
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Fig. 7.2. Comparison between analytic (thin line) and numeric (thick line) solutions for the
smaller values of the large parameter 

In the first case there is no visible difference between two predictions. For 

smaller values of  the trajectories diverge slightly. 

Consider some features of this solution. 

It is typical for systems with strong excitation that the solution is a superposi-

tion of slow component and fast oscillations. These are small respectively to the 

generalized coordinates x , but their derivatives are not small respectively to 

the generalized velocities x .

All the particular results which can be achieved according to the general ap-

proach (7.3), (7.4) can be also obtained by multiple scales or standard averag-

ing. These general purpose methods lead however only to particular results. 

The general relationships clarify the main difference between systems with the 

HF-excitation depending on the velocities and those with the HF-excitation de-

pending only on the positional coordinates. This difference can be formulated 

very simply:  

The HF-excitation depending on the velocities changes the effective mass 

of the system with respect to slow motions. 

The large fast oscillations of the damping coefficient change the frequency of 

the slow free oscillations of the system. This frequency can be controlled by the 
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excitation’s amplitude. This result is similar to that reported by Nayfeh and 

Nayfeh [81] for another particular system. This effect is typical for systems 

with strong excitation, but in this particular case it is caused by the changed ef-

fective mass of the system. This thesis is even clearer illustrated by the next 

example. 

7.2.2 A System with Two Degrees of Freedom and a Skew Symmetric 

HF Excitation Depending on the Velocities  

We are going to consider a system with two degrees of freedom as the second 

mathematical example. 

1 2 1 1 2

2 1 2 1 2

cos ,

cos ,

x a x t F x x

x a x t F x x
(7.41)

 The characteristic for this system is the skew-symmetric matrix of the HF exci-

tation. Let us assume that a  has the magnitude order 1; 1 is the large pa-

rameter. 1F  and 2F  are arbitrary bounded functions describing slow forces. The 

following relationships are valid according to our notation: 

1 1

2 2

0 1
cos ; ; ;

1 0

F x
ax F x

F x
Q Q (7.42)

  The equation of fast motion takes the form: 

cos
u

auQ (7.43)

Its periodic solution satisfying the average condition (7.2) is: 

0

1
U X

J a
W (7.44)

 Here 0J a  is the Bessel’s function of 0 -order:

2

0

0

1
cos sin

2
J a a d (7.45)

W  is the fundamental matrix to the linear homogeneous system (7.5) taking 

in this particular case, the form 
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* cosa
W

QW (7.46)

This equation can be easily solved. Let us write it down in components: 

11 12
21 22

21 22
11 12

cos ; cos

cos ; cos

W W
W a W a

W W
W a W a

(7.47)

This system can be transformed as follows: 

11 21
21 11

12 22
22 12

;
sin sin

;
sin sin

W W
W W

a a

W W
W W

a a

(7.48)

The fundamental solution to each pair of the equations is obvious: 

cos sin sin sin

sin sin cos sin

a a

a a
W (7.49)

Substituting these expressions into (7.4) we average the corresponding terms in 

order to obtain the equations governing the slow motion: 

0 0

1

2

1

0

2

1 01 1

0 1

cos sin sin sin

sin sin cos sin

1 0

0 1

T T

T

U

X J a J a

a a F
V F

Fa a

F
J a

F

M W W W

W (7.50)

The equation of the slow motion is: 

2

0X J a F X (7.51)

This system is extremely interesting. It is common for systems with fast excita-

tion, which does not depend on the generalized velocities that some additional 
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slow vibration forces expressing the averaged result of the HF excitation appear in 

the equations of the slow motion. These terms are usually added to the existing 

slow forces. Here we have got a totally different result. The existing slow forces 

are multiplied by a factor, which depends on the amplitude of fast excitation. Fur-

ther, due to the oscillating character of the Bessel’s function 0J , it has an infinite 

number of zeros. This means that there is a countable number of excitation ampli-

tudes corresponding to these zeros, for which the equation of the slow motion 

takes the form 0X  for arbitrary functions F , i.e. the system does not react to 

an arbitrary slow action. This unusual property is in some sense similar to the 

quantization effect in micro-physics. It is interesting to notice that this effect still 

remains for the higher order approximations. 

The orbit calculated numerically for the first zero of the Bessel’s function is 

shown in Fig. 7.3. 

1x

2x

1x

2x

Fig. 7.3. Stationary orbit for a = 2.40482 and =300.

It must be emphasized that the system (7.41) does not exist in mechanics and 

the considered example has only a pure mathematical character. Nevertheless it 

demonstrates clearly the principal difference between systems containing fast ex-

citation terms depending on the velocities and those, which do not contain these 

terms. The obtained result is quite unexpected and it would be interesting to ana-

lyze if there are physical systems described by these or similar equations. 

Let us now move on to some physically sensible examples illustrating the in-

fluence of the strong HF excitation depending on the velocities. 

7.3 The Lowest Natural Frequencies of an Elastic Rod 
with Periodic Structure 

Consider longitudinal waves in a rod with periodic structure and fixed ends. It 

can be described by a differential equation with partial derivatives and corre-

sponding boundary conditions: 
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2

2

0

0

0
x x l

u u
x E x A x

t x x

u u

(7.52)

The density of the rod, its elastic modulus and the cross section area presumed 

to be some fast oscillating periodic functions of the spatial coordinate x :

2

2

2

1

x x

E x E x

A x A x

l

(7.53)

The same equations are valid for any linear problem of wave propagation in a 

one dimensional periodic continuum. We are now going to find the approximate 

expressions for the lowest natural frequencies of the rod. Applying the standard 

procedure we try to find a solution to (7.52) in the following form: 

, sinu x t v x t (7.54)

Inserting (7.54) into (7.52) and balancing the corresponding terms the follow-

ing ordinary differential equation can be obtained: 

2
2

2

ln

0 0

d E x A xxd v dv
v

dx E x A x d x dx

v v l

(7.55)

This is an equation with strong excitation (  is the large parameter) considered 

in the section 7.1 with respect to the spatial coordinate x . Referring back to the 

general form (7.1) we can use the following notation: 

2
ln

; ;
d E A dv

F v x
E A d dx

(7.56)

The corresponding equation of the fast motion has the form: 

lnd E Ap
p

d
(7.57)
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Its solution fulfilling the average condition p V  is 

1

1V
p

E A E A
(7.58)

The system conjugated to the homogeneous part of the equation of the second 

approximation is 

lnd E AW
W

d
(7.59)

Its fundamental solution is easy to find: 

W E A (7.60)

Averaging the corresponding terms one obtains: 

1

21
;M V

E A
(7.61)

Finally, we receive the equation of “slow” motion, which means in this case the 

long wave approximation: 

2 1
0

0 0

V V
E A

V V l

(7.62)

The natural frequencies of the rod and the corresponding wave propagation ve-

locity follow immediately from this equation: 

1

1 1

; 1,2,

c
E A

nc
n

l

(7.63)

This result can be obtained by means of different perturbation methods. We are 

going to consider several more complicated examples in the next sections. 
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7.4 Response of a One Degree of Freedom Nonlinear 
System to a Strong HF External and Parametric Excitation 
Due to Oscillating Inertia 

Now we are going to consider an example, which appears naturally in systems 

with oscillating inertia coefficients.  

7.4.1 The Governing Equations and Their Transformation to the Basic 

Mathematical Form 

Consider the following system: 

3 sin
1 cos

d x
x x f t t

dt c t t
(7.64)

This equation describes a one degree of freedom system with oscillating inertia. 

An example of a mechanical system which in an appropriate approximation can be 

described by an equation similar to (7.64) is shown in Fig. 7.4. It is a pendulum 

with a mass moving along it.  

acos tacos t

Fig. 7.4. A pendulum with the fast oscillating length is the elementary example of a system 

with the HF parametric excitation depending on the velocity 

Its equation of motion can be written down as follows: 

2
cos cos sin 0

d
l a t g l a t

dt
(7.65)

Here l  is the unperturbed length of the pendulum. We can transform this equa-

tion to a form very similar to (7.64) if we presume that the amplitude of the 

length’s oscillations is small in comparison with the unperturbed length and re-

place the sine function by its cubic approximation: 



www.manaraa.com

7.4 Response of a One Degree of Freedom Nonlinear System to a Strong HF External and 

Parametric Excitation Due to Oscillating Inertia      281 

3

3

1; 1; 1 ; sin
6

1 2 cos 0
6

a a
O

l l

d a g
t

dt l l

(7.66)

The asymptotic accuracy of this equation would not change if we notice the fol-

lowing relationship: 

2

3

1
1 2 cos

1 2 cos

0
6

1 2 cos

a a
t O

al l
t

l

d g

adt l
t

l

(7.67)

This is exactly the form of the parametric excitation depending on the velocity 

that we are going to investigate in the equation (7.64). We will not assume the ex-

citation’s amplitude to be small. The form (7.64) allows highlighting the most im-

portant general properties of such a system avoiding the unnecessary mathematical 

complications. We also suppose, according to the previous chapter, the excita-

tion’s amplitude to be slowly modulated. 

7.4.2 Obtaining the Equations Governing Slow Motion 

The equation (7.64) can be rewritten as follows: 

3 cos
( )(1 cos )

1 cos

sin
sin( )(1 cos ) .

1 cos

xc
x x x c

c

xc
f c

c

(7.68)

Referring back to the general form (7.1) we can use the notation: 

3 cos
( )(1 cos )

1 cos

sin
sin( )(1 cos )

1 cos

xc
F x x c

c

xc
f c

c

(7.69)
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The corresponding equation of fast motion is: 

sin
sin( )(1 cos )

1 cos

u uc
f c

c
(7.70)

Its solution which fulfils the average condition u X  is 

1
2

cos cos 1 cosu X fc f c (7.71)

The system conjugated to the homogeneous part of the equation of second ap-

proximation determines the weighting function: 

sin 1
.

1 cos 1 cos

W cW
W

c
(7.72)

Averaging the corresponding terms one obtains: 

3 1
2

1; cosM V X X fc fc (7.73)

Finally, we receive the equation governing the slow motions of the system: 

3 1
cos

2

d fc
X X X

dt
(7.74)

7.4.3 Discussion of the Results 

This equation has several interesting peculiarities. Firstly, in this case neither 

the effective mass, nor the natural frequency gets transformed. Instead, we have 

another interesting phenomenon – the transformation of the slow excitation’s char-

acter. There are both external and parametric high frequency excitations in the 

original system. If the high frequency excitations are slowly modulated by the 

functions f t and c t , it means that we do not only deal with the high fre-

quency but also with the low frequency parametric and external excitations of the 

original system. The parametric excitation has completely disappeared in the 

equation of slow motion. The external excitation is transformed unexpectedly. It 

has become proportional to the first derivative of the product of the slow variable 

amplitudes of both external and parametric high frequency excitations. 

The properties of the averaged system are illustrated in the following figures, 

obtained by numeric simulation of the full equation (7.64). Figure 7.5 shows the 

solution for the parameter’s set: 0; 100; 0.
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a) b)a) b)

Fig. 7.5. System with strong excitation; velocity; a) modulation which does not excite the 

slow resonance: 
11

3
1 0.5sin ; (1 0.5sin )f t c t ; b) modulation exciting the slow 

resonance:
11

3
1; (1 0.5sin )f c t

This figure illustrates the typical character of the solutions to the systems with 

strong excitation, which is a superposition of slow motion and fast oscillations. 

The amplitude of the fast velocity oscillations is comparable with the amplitude of 

its slow evolution.

In case a) we have 0fc const fc fc . As it can be seen, in this case 

we have stationary oscillations of the averaged system. Figure 7.5 b) shows the re-

sults of the simulation for the case 0fc const fc fc . In this case, ac-

cording to the prediction, we have a typical picture of the external non parametric 

resonance with the linearly increasing amplitude of slow oscillations. 

In these cases there are no visible differences between analytic and numeric 

predictions. Figure 7.6 shows the comparison of analytic and numeric solutions 

for 5 . We can see that, although in this case the small parameter is not small 

enough, the asymptotic solution still gives the qualitative character of the system’s 

movement. However, the quantitative differences are significant. 

Fig. 7.6. Comparison of analytic and numeric predictions; travels 

The performed analysis can be generalized for the case of the very strong ex-

ternal excitation. The general analysis of the systems with the very strong excita-

tion still remains unaccomplished yet. But already this particular case demon-

strates some significant peculiarities of the very strong excitation.  
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7.5 Systems with Very strong Excitation in the Special 
Case of Fast Oscillating Inertial Coefficients 

Now we are going to consider systems with very strong excitation. Unfortunately 

it is not possible to perform this analysis for an arbitrary function . That’s why 

we restrict it to the special form: 

2

0 1 1 2

0 0

( , ) ( , ) ( , ) ( , , )

0 ; 0 ;

x t t x F t x F x t

x x x v t
(7.75)

Such a system appears naturally in mechanics, if the corresponding kinetic en-

ergy contains inertial coefficients depending on the fast time: 1
2

,TT x J t x
and the external excitation is very strong. 

The analysis of this system is from the technical point of view very similar to 

the case of the strong excitation. It would be natural to expect “the strong re-

sponse”, i.e. solutions with 1x O , for systems with very strong excitation. 

But under some special conditions the limited solutions 1x O  are also possi-

ble. We will call these solutions “the weak response”. 

The equations governing the slow motions can be formally obtained for the sys-

tem (7.75) using both the multiple scales and the modified averaging method. Let 

us apply the first one.  

We convert as usual to an equation with partial derivatives which we try to 

solve asymptotically (compare with the equations (7.6), (7.7)). Balancing the 

terms of the same magnitude order one obtains the following equations: 

2
2 0 0

1 02
: (7.76)

22
1 0 0 01 1

1 12
: 2 F

t t
(7.77)

22 2
0 02 1

2 2

02 1 1
1 1 2 0

: 2

, ,

t t

F F t
t t

(7.78)

Let us try to find a solution to these equations as a superposition of the slow 

evolution and fast oscillations being of the same order of magnitude already at the 

coordinates’ level. Let us rewrite the equation (7.76) as follows: 
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0 0
1 0 0 0;

u
u u (7.79)

We require that this equation has a periodic solution with vanishing average; 

otherwise the function 0  would increase with the fast time. It is possible only if 

the following condition is fulfilled

0 0TW (7.80)

Here W  is the fundamental matrix of the homogeneous system conjugated to 

(7.79):

1 ; det 0T TW
W W (7.81)

If such a solution is found one can represent the corresponding solution to 

(7.76) as follows: 

0 0 0 0

0

, ; ,X t t t u X d (7.82)

The equation (7.77) can be analyzed similarly. We can transform it: 

0 01 1
1 1 1 0 1;

uu
u Fu u

t t
(7.83)

We require that this equation has a periodic solution satisfying the condition  

1 0,u t X (7.84)

It is only possible if the following condition is fulfilled: 

1 0 0 0TW Fu u t (7.85)

Finally we can consider the equation (7.78). It can be transformed to the form: 

2 1
1 2 1 1 0 2 0 0

2 1
2

, ,
u u

u F u X F X t X
t

u
t

(7.86)
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The requirement that this equation must have a periodic solution with respect to 

the fast time, leads us directly to the equation governing the slow motion which 

can be written down as follows: 

0 0 0 0 0

0 0

0 0 1 0 0

1
1 1

0 0 0 0 1 00 0, 0 0, 00

, , , , ;

( , , ) ;

( , , ) ( , ) , ,

;

,

T

T T

T

t t tt

M X X t X V X X t

M X X t W

V X X t W F t X W F X t

u
W Fu

t

X x X v u u

(7.87)

The last term in the function V also contains the slow acceleration 0X .

Under certain mathematical conditions concerning the continuity of the in-

volved functions, the solutions to the systems (7.87) and (7.75) are close to each 

other.  

It is important to notice that the slow component of the solution in this case is 

overlapped by fast oscillations of the same order of magnitude. The slow compo-

nent of the velocity is overlapped by the fast oscillations which are much larger 

than the slow component. The next examples illustrate this general result. 

7.6 Response of a One Degree of Freedom Nonlinear 
System to Very Strong HF External and Strong Parametric 
Excitation due to Oscillating Inertia 

We are going now to consider the same system as in the section 7.4 but with very 

strong external excitation: 

3 2 sin
1 cos

d x
x x f t t

dt c t t
(7.88)

This equation can be rewritten as follows: 

2

3

sin
sin 1 cos

1 cos

cos
1 cos

1 cos

xc
x f c

c

xc
x x c

c

(7.89)
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7.6.1 Obtaining the Equations Governing the Slow Motion 

Referring back to the general form (7.75) we can use the following notation: 

0 1

3

1 2

sin
sin 1 cos ;

1 cos

cos
; 1 cos

1 cos

c
f c

c

c
F F x x c

c

(7.90)

The corresponding equation of fast motion (7.79) has the following form: 

0
0

sin
sin 1 cos

1 cos

u c
f c u

c
(7.91)

This equation does not differ from that already solved equation (7.70). The only 

difference is that now its average has to vanish, i.e. 0u . The corresponding 

solution is: 

0

2

1
cos cos 1 cos

2

1 1
sin( ) sin(2 ) sin cos .

4 2

u fc f c

f fc fc

(7.92)

Equation (7.83) can be rewritten as follows: 

01 1 sin
1 cos

1 cos 1 cos

uu u c
c

c t c
(7.93)

This equation does not contain 0X . Consequently this equation cannot be used 

in order to determine the slow part of the solution. However, it gives us a restric-

tion, which must be fulfilled by functions f t  and c t . This restriction is 

necessary for the solutions of this type to exist. This condition from the mathe-

matical point of view means that we require the periodicity of the solutions to 

(7.93). It has the form (7.85): 

cos 0fc fc (7.94)

Assuming, that this condition is fulfilled, we can find the function 1u  satisfying 

the averaging condition 1 0u X :
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1
1 0 2

sin sin 1 cosu X fc f c (7.95)

Finally, averaging the corresponding terms according to (7.87), we obtain the 

equation of slow motion: 

2 2 2 2 2 33 1 1
0 0 02 16 4

3 4 231 1
2 16 4

1 1 cos 1

sin sin 1 cos

X f c c c X X

fc fc f c c
(7.96)

7.6.2 Discussion of the Results 

The main properties of this system are very similar to those of the system with 

strong excitation. The frequency of the free oscillations of the averaged system 

depends on the amplitude of the high frequency excitation. If both external and pa-

rametric excitations are slowly modulated, we can find both parametric and exter-

nal slow excitations in the averaged system. However, they are significantly 

changed. In order for slow parametric excitation to exist, the system has to be 

nonlinear ( 0 ) and it is also necessary to have a modulated external excitation 

( 0f ).

If we consider the simplest linear situation, we obtain an equation, which is 

very similar to the situation of the strong excitation: 

1
0 0 2

sinX X fc fc (7.97)

The only difference is that the external slow excitation depends on the second 

derivative of the slow modulation. Another point is that in this case the excitation 

is proportional to the sine of the phase difference between the external and the pa-

rametric high frequency excitations and not to the cosine as in the previous case. 

However we should not forget the relationship (7.94). It couples the modulating 

functions if cos 0 .

00
c

fc fc c t
f t

(7.98)

Then the equation (7.97) can be rewritten as follows: 

201
0 0 2 2

sin
c

X X ff f
f

(7.99)
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 It should be noticed, that a particular example of this system, without paramet-

ric excitation, was considered by Nayfeh and Nayfeh [81]. Equation (7.96) con-

forms completely to their results. 

Figure 7.7 represents the direct numeric simulation results with regard to the 

full equations (5.3.1). The calculation was carried out using the following parame-

ters:
1

0; 0; 100; 1 0.5sin ;
3 1 0.5sin

f t c
t

It can be noticed, that the solution now is a superposition of fast oscillations 

and comparatively large slow motions – even at the level of the generalized coor-

dinates.

-2

-1

0

1

2

0 5 10 15 20

x

t
-2

-1

0

1

2

0 5 10 15 20

x

t

Fig. 7.7. Weak response in a system with very strong excitation 

7.6.3 Large Solutions 

At the beginning of this analysis we have assumed, that the necessary condition 

for the existence of such solutions (7.94) is fulfilled. But the equation can be also 

analyzed presumed this condition is unfulfilled. A solution with the amplitude or-

der 1 does not exist in this case. However, there are solutions with larger ampli-

tudes. In order to demonstrate this, the simplest linear situation will be considered 

and the scale of the variable x  changed: 

x z (7.100)

The new variable z  is governed by the following equation: 

cos
1 cos

1 cos

sin
sin 1 cos

1 cos

zc
z z c

c

zc
f c

c

(7.101)

This is the linear variant of the previously analyzed equation with strong excita-

tion (7.68). Its solutions are known. 
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Hence, in systems with very strong excitation we should distinguish between 

two types of solutions. These will be referred to as “the weak response” and “the 

strong response”. The strong response exists under more general conditions than 

the weak response.  The slow amplitude of the strong response is significantly lar-

ger than 1. If certain additional restrictions on the character of the excitation’s 

modulation are fulfilled, the weak response appears alongside with the strong re-

sponse. Its amplitude has the order of magnitude 1.

Figure 7.8 represents the direct numeric simulation results with regard to the 

full equation (7.88). The calculation was carried out using the following parame-

ter’s values: 
1

0; 0; 100; 1;
3 1 0.5sin

f c
t
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x

t-100
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100

0 5 10 15 20
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t

Fig. 7.8. Strong response in a system with very strong excitation 

In this situation the weak response does not exist. The reaction of the system is 

typical for the external resonance, as predicted by the equation of the slow motion 

(7.74). The amplitude of the oscillations has from the very beginning the magni-

tude order .

7.7 Dynamics of a Two Link Pendulum with a Fast 
Rotating Second Link 

A two link pendulum is considered as the last example in this section in order to 

demonstrate how the equations with very strong external excitation and strong pa-

rametric excitation depending on the velocity appear in mechanical systems.  
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7.7.1 Equations of Motion and Their Transformation to the Basic 

Form for Systems with Very Strong Excitation 

The system consists of the first link characterized by its mass M  and inertia 1J

and the second link of the mass m  and inertia 2J  suspended at the inertia axis of 

the first link (cf. Fig. 7.9). 

l2

l

l1

l2

l

l1

Fig. 7.9. The two link pendulum 

The distance between the suspension points of the links is 1l , the distance be-

tween the suspension point and the mass point of the first link is l , and between 

the corresponding suspension point and the mass point of the second link is 2l .

The generalized coordinates of the links 1  and 2 are shown in Fig. 7.9. 

The equations of motion for this two link mechanism can be written as follows 

(cf.  [117]): 

2

1 1 2 1 2 2 1 2 1 2 2 2

2

1 2 2 1 2 1 2 2 2 1

2 2 2 1 2 2 1 1 2 2 1 2 2

2 cos cos

2 sin sin

cos sin

J ml J ml l J ml l

ml l ml l M

J J ml l ml l M

(7.102)

1M  and 2M  are the external torques. We assume that the first external torque 

is caused by the gravity: 

1 1 2 1 2sin sinM Mgl mgl (7.103)

There is an electric drive in the junction between the first and the second link 

which holds the rotation speed of the second link constant: 
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2 const (7.104)

This is a simple model representing a fast rotating unbalanced mechanism at-

tached to some nonlinear flexible structure. Our aim now is to show how the fast 

motion of the second link can influence the slow properties of the flexible base. 

Inserting (7.104) into the first equation (7.102) one obtains the following equation: 

2 2sin 2 sin sin sin

2cos

t t k t

t
(7.105)

The following notation is used here: 

2

1 2
1 2

2 1 1 2 1

1

; ; 2;
J JMl L g

L l k
ml ml l l l (7.106)

This is a system with the very strong external excitation if the following as-

sumptions concerning the magnitude orders of the parameters are fulfilled: 

1; , , (1)k O .

7.7.2 Obtaining Equations Governing the Slow Motion 

Referring back to the general form (7.75) one can use the following notation: 

0 1

2

1 2

sin 2sin
;

2cos 2cos

sin sin
0; ;

2cos

k
F F t

(7.107)

The very strong external excitation appears as a natural result of the fast rotat-

ing unbalanced second link. The strong excitation depending on the velocity is the 

result of the variable effective inertia of the pendulum as a whole. 

We are interested in the limited solutions to the equation (7.105), i.e. in the os-

cillations of the pendulum corresponding to the weak response due to the termi-

nology of the previous section. The strong response corresponds then to the rota-

tional motion. 

Equation of the fast motion (7.79) can be written as follows: 

0
0

2sin 1

cos 2

u
u (7.108)
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Its solution satisfying the periodicity condition for the fast oscillating motion is: 

2

0

41
1

2 2cos
u (7.109)

The equation conjugated to the homogeneous one is 

2sin
2cos

2cos

W
W W (7.110)

Now the equation (7.83) has to be considered. The necessary condition for the 

existence of its periodic solution is fulfilled automatically 

( 1 00; 0F u t ). The equation itself takes the form: 

1
1 1 0

2sin
;

2cos

u
u u X (7.111)

Its solution is: 

2

1 0 0 0

4
1 2

2cos
u X X u (7.112)

In order to obtain the equation of slow motion we have now to average the cor-

responding terms. The function  describing the large oscillating part of the so-

lution must be calculated first. 

2

0

41
1

2 2cos

2
arctan tan

2 2
2

1 ; 0,1, 2,

d

n

n n n

(7.113)

This function has several interesting properties: 

1. 2 0

2. sin 0

3. sin 0
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4.

0

1
cos cos d

5.

0

1
cos cos d

Taking (7.112) into account that one can notice that 

02
v

X u
t

(7.114)

The equation of slow motion can be rewritten down as follows: 

2 2

0 04 cos cos sinX k X (7.115)

It is not a trivial problem to calculate the required averages. They cannot be ex-

pressed in elementary function. However it can be done using the full elliptic inte-

grals of the first and the second art: 

2 2
2 2

2 2
0 0

1
1 sin ;

1 sin
E x x d K x d

x

(7.116)

Then the following relationships are valid: 

0

0

0

1 2
cos cos arctan tan

2 2 2

2 2 2

22 22

1 2 2

1 2
cos cos arctan tan

2 2 2

2 2 2

22 22

1

d

E K

S

d

E K

1

2 2
S

(7.117)

The alternative way is to tabulate these functions numerically. The numerical 

results are shown in Figure 7.10. 
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Fig. 7.10. Functions 0S  and 1S

The equation of slow motion for the pendulum takes its final form if we use  

these functions: 

2 2

0 0 1 04 sin 0X k S S X (7.118)

7.7.3 Discussion of the Results 

A typical numerical solution of the full equation (7.105) for the case of the lim-

ited slow oscillations of the pendulum is shown in Fig. 7.11. The simulations were 

performed for the following parameter’s values:  

2,5; 1; 1; 10.k
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Fig. 7.11. Small slow oscillations of the pendulum 

It is easy to notice here that the solution is a superposition of slow and fast os-

cillations of the same magnitude order at the level of the coordinates, which is 

characteristic for systems with very strong excitation. 

Fig. 7.12 shows the same simulation but for different initial conditions corre-

sponding to the motion in the vicinity of the heteroclinic curves. 
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Fig. 7.12. Large slow oscillations of the pendulum 

Figure 7.13 displays the slow rotations of the pendulum for the corresponding 

initial conditions. 
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Fig. 7.13. Slow rotation of the pendulum 

Equation (7.118) shows that the “slow” oscillation’s frequency of the pendulum 

increases as 2 . The corresponding comparison between the theoretic and 

numeric results is shown in Figure 7.14. 
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Fig. 7.14. Frequency of the “small” slow  oscillations as a function  of the parameter  ;

 comparison between approximate and numeric solutions 
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7.7.4 A Short Remark on the Practical Importance of the Considered 

Solutions

An interesting problem is connected with the existence area of the considered 

type of motion in the initial conditions space. The initial conditions for the slow 

variable are determined according to (7.87): 

0 0

0 0

0

2 1 2
0 1

2 2 2

X

X
(7.119)

These values (first of all for 0X ) must be of the order of magnitude 1. This re-

quirement leads to the desired condition: 

0

1 2
1 1

2 2
O (7.120)

The relationship (7.120) seems to be a very special condition. The initial veloc-

ity must be inside of a relative small 1O strip around the large value O .

The fast rotation of the pendulum is the solution for all other initial conditions. 

This rotation corresponds to the strong response in the terminology of the previous 

section. In other words the attraction area of the weak response is mach smaller 

that the attraction area of the strong response.  

So the importance of the considered limited solution seems to be relative small. 

However exactly this type of motion is excited by the straight forward acceleration 

of the second link from the rest to some large value. This interesting fact is illus-

trated by the numeric simulation results in Figure 7.15. The second pendulum’s 

link was slowly accelerated so that its rotation speed increased according the fol-

lowing relationship: 

0,1510 1 te (7.121)
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Fig. 7.15. Oscillations of the pendulum during and after the acceleration of the second link 



www.manaraa.com

298      7. Systems with High-Frequency Excitation: Advanced Analysis and 

Generalizations

From this point of view the limited solutions in the considered system are im-

portant for the practice. 

Remark: Systems with dominating terms depending on the velocities were 

considered in this chapter. One could try to apply this approach to the con-

trol problem investigated in the previous chapter. It is however not possi-

ble, because the corresponding equation of the fast motion does not have 

the general periodic solution which is a significant requirement for the ap-

proach discussed in this chapter. 

 7.8 Conclusions 

The general analysis of systems with strong HF excitation was performed in this 

chapter. The main attention was attracted to the systems with HF terms depending 

on the generalized velocities. The following general properties of the solutions to 

these systems can be emphasized. 

It is typical for systems with strong excitation that their solution is a superposi-

tion of a slow component and fast oscillations. These are small respectively to 

the generalized coordinates x , but their derivatives are not small respectively 

to the generalized velocities x .

The main difference between systems with the HF excitation depending on the 

velocities and those with the HF excitation depending only on the positional 

coordinates can be formulated very simply:  

The HF excitation depending on the velocities changes the effective mass 

of the system with respect to slow motions. 

The performed analysis is illustrated by several mathematical and mechanical ex-

amples. It is also generalized for systems with very strong external excitation 

which doesn’t depend on the state variables. In this case the fast vibrations are not 

small even at the coordinates’ level. However limited solutions are possible also in 

these systems. The dynamics of a two link pendulum with the fast rotating second 

link is considered as the mechanical example. It illustrates the main dynamic ef-

fects of the very strong HF excitation on the light flexible structures carrying un-

balanced rotors, for which the performed analysis is especially important. 
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Appendix I: The first Bogoliubov’s Theorem for Standard 
Averaging 

Specific Gronwall’s lemma 

Consider a linear integral inequality 

0

t

t

w t a b w d (I.1) 

Suppose  

0, 0, 0w t a b (I.2) 

Then the following inequality is also fulfilled: 

0b t t
w t ae (I.3) 

Proof

The inequality (I.1) can be rewritten as follows 

0

t

t

bw t
b

a b w d
(I.4) 

Integrating it with respect to t  one obtains: 

0

0log log

t

t

a b w d a b t t (I.5) 

Taking into account the monotony of the exponent we notice 
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0

0

t
b t t

t

a b w d ae (I.6) 

 Applying the original inequality (I.1) we conclude: 

0b t t
w t ae (I.7) 

This is the inequality we wanted to prove. 

Theorem

Consider a system in the standard form 

0, , , 0x X x t x x (I.8) 

Suppose:

1. The vector function 
1: , , 1nX x D R t R  is a measurable T -

periodic function with respect to t  for x D

, , , , ,X x t T X x t t x D (I.9) 

2. It is bounded and satisfies Lipschitz-condition with respect to the vector-

argument x :

1 2 1 2

, ,

, , , ,

X x t M

X x t X x t x x
(I.10) 

3. The time average of the function X  exists uniformly with respect to x :

0

1
, , , ,

T

t
X x t X x t dt

T
(I.11) 

Consider the averaged system satisfying the same initial conditions alongside 

(I.8):

0, , 0

, , ,
t

x

X t
(I.12) 

Under these assumptions the difference between the solutions of the original 

system (I.8) and the averaged system (I.12) can be estimated as follows: 

2

1

C tx C e (I.13) 
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The constants 1C  and 2C  does not depend on the small parameter .

Proof

(The following proof is based on [114, 139]) 

The difference between the solutions to (I.8) and (I.12) can be estimated as fol-

lows:

0

0

0

, , ,

, , , ,

, , ,

t

t

t

x X x t dt

X x t X t dt

X t dt

(I.14) 

According to Lipschitz-condition (I.10) the following estimation can be ob-

tained from this inequality: 

1

0 0

. , , , ,

, i.e. 1

N Tt

x x dt X t dt

N t T NT t N T

(I.15) 

In order to estimate the second term the values j jT  can be intro-

duced. Notice that the following identity is valid because  is the average of X :

( 1)

, , , 0, 1, 2,3,

j T

j j

jT

X t dt j (I.16) 

Then we can estimate: 
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0

1

0

1

0

1

00

.

, , , ,

, ,

2

t

j TN

j

j jT

j TN

j

j jT

j Tt N

j

j jT

x x dt

X t X t dt

dt

x dt dt

(I.17) 

But  is the solution of the system 

, , jjT (I.18) 

Hence using (I.18) only for one period, one finds 

j TM (I.19) 

Using (I.19) the following estimation for the accuracy of the first order averag-

ing can be obtained: 

2 2

0

2 ( 1)

t

x x dt T M N (I.20) 

The last step is to apply the Gronwall’s lemma giving the final estimate: 

2 22 ( 1) tx M T N e (I.21) 

This is the required result (I.13) with 

1

2

2 ( 1)C MT N T

C
(I.22) 

It guarantees that the mistake by using the averaged system instead of the origi-

nal one has the magnitude order of the small parameter for the asymptotically long 

time interval /1Ot .
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Appendix II: On the Attractive Properties of the 
Asymptotically Stable Equilibrium of the Averaged 
System

Preliminary remarks 

Consider a system 

0 0

, , 0, 0A t t

t
(II.1) 

Here 0, nD R . Suppose 

1. A  is a constant n n  matrix with eigenvalues having negative real parts 

only.

2. The function , t  is continuous with respect to t .

3. The function , t  is continuously differentiable with respect to .

4. The function , t o  as 0 , uniformly in t

Then there exist constants 0 , , 0t a b  such that if 0 a  and 0t t  then 

0

0

b t t
t e (II.2) 

 Even more: if we consider two solutions satisfying different initial conditions 

1 t  and 2 t , then under the same conditions 

0

1 2 1 0 2 0

b t t
t t t t e (II.3) 

 This is the particular case of the classical theorem of Poincaré – Lyapunov. Its 

proof can be found in [114].  

The following theorem describes the attractive properties of the asymptotically 

stable equilibrium of the averaged system. 

Theorem (Eckhaus [29], Sanchez-Palencia [112]) 

Consider the initial value problem 

0

0

, , , 0

, n

x X x t x x

x x D R
(II.4) 

Suppose the function X satisfies all the conditions of the first Bogoliubov’s theo-

rem. Consider in addition the averaged system  
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0, , 0

, , ,
t

x

X t
(II.5) 

Suppose:

1.  This system has an equilibrium 0  which is asymptotically stable in the 

linear approximation.  

2. The function ,  is continuously differentiable with respect to  in D .

3. The asymptotically stable equilibrium 0  has a domain of attraction 

0D D .

Then if 0 0x D  then

3 , 0x t t C t (II.6) 

Proof

The following estimation is valid for an arbitrary 1T O  according to the first 

Bogoliubov’s theorem: 

2

1 , 0C T T
x t t C e t (II.7) 

Let us split the time-axis in an infinite sequence of the long time intervals: 

12
0, 0, , ,

1, 2,

n TT T T nT

n

(II.8) 

At each time interval we introduce the corresponding averaged system satisfying 

the correct initial conditions: 

, ,n n n n

nT nT
x x (II.9) 

According to (II.7) the following estimation is valid 

2

1

1
,C T

n

n TnT
x t t C e t (II.10) 

On the other hand we can apply the inequality (II.3): 
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1
,

nT
b t

n TnTn n

nT
t t e x (II.11) 

Notice that for the considered time interval  

1
T

b

k e (II.12) 

Let us consider the first interval. The following estimates are valid: 

00,
,Tx t t t t

T T
x

(II.13) 

Consider the second interval: 

2 2 21 1, , ,

1

2 2
1

T T T T T T

T T
b t b t

x t t x t t t t

T T
e x e

T T
x k

(II.14) 

For the third interval we obtain 

2 3 2 32, ,

2 32 ,

2

2

2 2
1

3 3
1

T T T T

T T

T T
b t b t

x t t x t t

t t

T T
e x k e

T T
x k k

(II.15) 

Continuing this process we can easily show by induction that 
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1

1
1

,
1

1 1
1

n T
b t

n
n TnT

n

x t t k k e

n T n T
x k k

(II.16) 

Taking the limit for n , which corresponds to t , we obtain the final 

estimate 

1

1
1 , 1

1

1

1

n T
b t

nk k e
k

k
x t t

k

(II.17) 

Taking (II.7) and (II.12) into account we find 

2

3 1

1

1

T
b

C T

T
b

e
C C e

e

(II.18) 

This relationship completes the proof. 

Note

This theorem actually requires continuity and smoothness of the averaged 

system and its asymptotic accuracy. It is not really important if the original 

system is continuous or not. Thus this theorem can be directly generalized 

for all discontinuous problems considered in this book as soon as the as-

ymptotic accuracy of the corresponding averaged system is proved. 
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Appendix III: Averaging of Systems with Short Strong 
Perturbations

Theorem

(The following theorem and its proof are based on [36]. An alternative approach 

based on differential inclusions can be found in for example in [95 – 97].) 

Consider the initial value problem 

0

, , ,

0

x X x t Z x t E g t f x t E g t

x x
(III.1) 

Here E t  is the “one step” function: 

1 if 0
( ) ( ) 1

( ) 1/ 2 if 0;
( ) ( ) sgn( )

0 if 0

x
E x E x

E x x
E x E x x

x

(III.2) 

Consider the corresponding averaged problem alongside (III.1): 

0, 0

,

, ,

t

t

x

X t

Z t E g t f t E g t

(III.3) 

Here

1 1

0 0

, : ; : ; :

, , , 0, , 0,

n n n

n

X Z R R f R R g R R

x x D R t
(III.4) 

Suppose:

1. ,X Z and f  are measurable functions of t  for constant x  and .

2. In addition f  is a piecewise differentiable function with respect to t , and its 

derivative is bounded: 

sup t

f
F

t
(III.5) 

3. All the functions are T -periodic with respect to t .
t
 means the time aver-

age:
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0

1
T

t
f t f t dt

T
(III.6) 

4. X and Z  are bounded Lipschitz-continuous functions in x  on D :

1 2 1 2

1 2 1 2

( , ) ; ( , ) ( , )

( , ) ; ( , ) ( , )

X X

Z Z

X x t M X x t X x t x x

Z x t M Z x t Z x t x x
(III.7) 

5. f  is a bounded Lipschitz-continuous function in x  on D :

1 2 1 2( , ) ; ( , ) ( , )f ff x t M f x t f x t x x (III.8) 

6.
(1)( ) 0,g t C .

7. The equation 0g t  has m  solutions 0 , 1, ,it i m  for 0,t T and

0 0ig t G (III.9) 

8.  All constants do not depend on and belongs to the interior subset of D

on the time scale 1

Then the solutions to (III.1) and (III.3) are asymptotically close to each other, 

i.e. the error one makes on using the averaged system instead of the original one is 

small for the asymptotically long time interval: 

2

1( ) ( )
C tx t t C e (III.10) 

Remark

The main point in the proof of the averaging theorem is the Gronwall’s lemma, 

applied to an inequality like the following one (cf. Appendix I) 

0

0

, ,

t

t

X

x X x X d const

x d const

(III.11) 

The last estimation is obtained due to the Lipschitz-continuity of X . This con-

dition is not fulfilled for the right hand side of the equations in our case. But 

(III.11) shows that this condition should not be necessarily fulfilled for each time 

point, but it should be fulfilled in some integral sense. Thus before we prove the 
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Theorem, the following Lemma showing that the Lipschitz-condition in our case 

is fulfilled in the integral sense will be formulated and proved. 

Lemma

Under the conditions of theorem the following inequality is fulfilled 

1 1 1

0

2 2

1

1 1 2

0

1

2 1 2 0

0 10

, ( ) , ( )

, ( ) , ( )

( ) ( )

N T

N

N T N m

N i

j i

N Z x t E g t f x t E g t

Z x t E g t f x t E g t dt

C x x E g t K E g t dt

C x x t t jT

(III.12) 

Here N T  is the integer part of T , so that 1NT N T .

is the standard Dirac’s function. 

Proof

First 1N  will be split into two parts using the triangle inequality: 

1 1 2 1

0

2 1 2

0

, , ( ) , ( )

, ( ) , ( ) ,

N Z x t Z x t E g t f x t E g t dt

Z x t E g t f x t E g t f x t dt

(III.13) 

According to (III.7) and this estimation can be transformed as follows: 

1

1 1 2 1

0

1

1 2

0

( ) , ( )

( ) , ( ) ,

n TN

Z

n nT

n TN

Z

n nT

N x x E g t f x t E g t dt

M E g t f x t E g t f x t dt

(III.14) 

Now the difference between two E -functions has to be estimated. But it is al-

most always equal to zero except in the vicinity of the zeros of g t . Consider 

the equation 
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, 0g t f x t (III.15) 

Let us show, that this equation has at least one solution in the vicinity of 

0it jT  (cf. (III.9)). 

Assume 0 0ig t  and define: 

0 0;
f f

i i

M M
t t t t

G G
(III.16) 

The case 0 0ig t can be investigated similarly. 

The further analysis is illustrated in Fig. AIII.1. 

0t

g t
,g t f x t

,f x t

0

fM
t

G 0

fM
t

G

0t

g t
,g t f x t

,f x t

0

fM
t

G 0

fM
t

G

Fig. AIII.1. On the zeros of the function ,g t f x t

The basic idea is very simple: The function ( , )f x t  is limited. Thus the func-

tion ( ) ( , )g t f x t  is bounded between ( ) fg t M  and ( ) fg t M . As a 

result the roots of  ( ) ( , )g t f x t  are also bounded between the roots of the 

bounding functions. Hence g t  can be estimated: 

0 0 0i i i fg t g t g t g t g t G t t M (III.17) 
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Using the triangle inequality in the form a b a b we obtain 

, ,

, 0f

g t f x t g t f x t

M f x t
(III.18) 

Similarly it can be shown that 0i fg t g t M  and 

, , 0fg t f x t M f x t (III.19) 

Hence between t and t  there is at least one switch point of the function 

,E g t f x t E g t (III.20) 

And there are no switch points outside the interval until the next zero point of 

g t .

The maximal length of this interval can be estimated as follows: 

2
fM

t t
G

(III.21) 

Now the difference (III.20) can be estimated in the vicinity of switch points: 

,

2 f

E g t f x t E g t

E g t M E g t
(III.22) 

This estimate does not depend on x , so it is correct uniformly with respect to 

x . Comparing (III.22) and (III.14) with (III.12) one obtains 

1 ; 2N Z fC K M (III.23) 

Now the second term in (III.12) should be estimated. The solution of the equa-

tion (III.15) in the vicinity of it  should be considered as a function of x .

Fig. AIII.2 illustrates the simple sense of the following analysis – if 

( ) ( , )g t f x t  is a Lipschitz-continuous function with respect to x , then the 

solution of the equation ( ) ( , ) 0g t f x t  is also a Lipschitz-continuous func-

tion:

0, : ,0i i it x t x t (III.24) 
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Equation (III.15) determines it as an implicit function of x  and  in the vicin-

ity of 0 In our conditions, according to the Implicit-Function-Theorem [98] 

(III.24) is a Lipschitz-continuous function with respect to x  and . The corre-

sponding Lipschitz-constant can be evaluated due to the supremum of the partial 

derivative of the function (III.24). It will be denoted as t .

1,g t f x t

2,g t f x t

g t

1,it x

2,it x

,f x t

t

increasing x

,it x

x

1,g t f x t

2,g t f x t

g t

1,it x

2,it x

1,g t f x t

2,g t f x t

g t

1,it x

2,it x

,f x t

t

increasing x

,it x

x

,f x t

t

increasing x

,it x

x

Fig. AIII.2. On the definition and Lipschitz-continuity of the implicit function 

,it x

Now the second term in (III.14) can be rewritten as follows: 

1 2

1

1 2

1

1 2 0

1, ,

( ) , ( ) ,

i i

n T

nT

n T m

t i

inTt x t x

E g t f x t E g t f x t dt

dt x x t t nT

(III.25) 

Comparing the last estimation with (III.12) it can be seen that 
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2N Z tC M (III.26) 

The proof of the lemma is accomplished. 

Now we can prove the theorem. 

Proof of the theorem 

The difference between the solutions to (III.1) and (III.3) has to be estimated. 

Because the initial conditions are the same, it is simple to see that 

0

0

,

, ,

t

t

x X x d

Z x E g f x E g d

(III.27) 

The estimation of these terms is now almost the same as for the proof of the 

standard averaging (Appendix I). The only difference is that the Lemma will be 

used here instead of the Lipschitz-condition in order to estimate the second term: 

0

0

0 0

0

0

,

, ,

, , ,

, ,

, ,

, ,

t

t

t t

t

t

X x d

Z x E g f x E g d

X x X d X d

Z x E g f x E g

Z E g f E g d

Z E g f E g d

(III.28) 

Now the Lipschitz-condition can be applied to the first term and the Lemma to 

the third term: 
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1

1

0 0

, ,

N Tt

XJ X x X d x d (III.29) 

3

0

1

1

0

1

2 0

0 10

, ,

, ,

t

N T

N

N T N m

N i

j i

J Z x E g f x E g

Z E g f E g d

C x E g K E g d

C x t jT d

(III.30) 

In order to estimate the second term j jT  can be introduced. Notice 

that the following identity is valid because  is the average of X :

1

, 0

j T

j j

jT

X t d (III.31) 

Then 

1

2

0

1

0

1

0

1

0

,

, ,

2

N T

j TN

j

j jT

j TN

j

j jT

j TN

X j

j jT

J X d

X X d

d

d

(III.32) 

But  is the solution of the system 
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, jjT (III.33) 

Due to the conditions (III.7) and (III.8) it is easy to see, that 

1 2 1 2 1 2

; 2 /

; 2 /

X Z f

N f N

M mM M G

x x x x m C M G C
(III.34) 

Thus using (III.33) only for one period we find 

2 Z f

j X

mM M
T M

G
(III.35) 

Inserting (III.35) into (III.32) one obtains the estimation for the second term in 

(III.28):

2 2

2 2 1 2 /X X Z fJ T N M mM M G (III.36) 

The last term in (III.28) can be estimated similarly but the Lipschitz-condition 

in (III.32) must be replaced by the Lemma: 

1

4

0

1

0

0 1

, , ,

2

, ,

, , ,

N T

Z f

X

j T mN

Z t i

j ijT

J Z E d

mM M
T M

G

E t jT d

E E g f E g

(III.37) 

The last integral can be easily estimated, because (see (III.21)) 

1

0

1

0

0 1

, , 2 1

1

j TN
f

j jT

j T mN

i

j ijT

M
E d N m

G

t jT d N m

(III.38) 

Hence
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2

4 1 2

2

X Z f

Z f t

J T N M mM M G

m M G m T
(III.39) 

The last step is to apply the Gronwall’s lemma to (III.28). It gives us the final 

estimate: 

1 2 /

2 4

X Z f tN T m M G m
x J J e (III.40) 

This inequality gives the required accuracy and fulfils the proof of the Theo-

rem. 
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Appendix IV: Averaging of Systems with Small 
Discontinuities of the Right Hand Sides 

Theorem 

Consider the initial value problem 

0

,

0

x Z x t E g t f x

x x
(IV.1) 

Here E t  is the “one step” function (cf. Appendix III). 

 Consider the corresponding averaged problem alongside with (IV.1): 

0, 0

,
t

x

Z t E g t f
(IV.2) 

Here

1

1

1 1

0 0

:

:

: ,

, , , 0, , 0,

n n

n

f

g f g

n

Z R R

f R W R

g R W R W W

x x D R t

(IV.3) 

Suppose

1. Z and f are measurable functions of t  for constant x  and 

2. All the functions are T -periodic with respect to t .
t
means the average 

with respect to time. 

3. Z  is a bounded Lipschitz-continuous function in x  on D , i.e. 

1 2 1 2( , ) ; ( , ) ( , )Z ZZ x t M Z x t Z x t x x (IV.4) 

4. f  is a bounded differentiable function in x  on D  with Lipschitz-

constant f , i.e.

1 2 1 2( , ) ; ( , ) ( , )f ff x t M f x t f x t x x (IV.5) 

5.
(1)( ) 0,g t C
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6. The equation ( ) fg t const W  has m  solutions 0 , 1, ,it i m  for 

0,t T and

0 0ig t G (IV.6) 

 This condition is illustrated in Fig. AIV.1. 

Fig. AIV.3. The derivative of the function  is not equal to zero in the whole domain 

fW

7. All the constants does not depend on belongs to the interior subset of D

on the time scale 1 .

 Then the solutions to (IV.1) and (IV.2) are asymptotically close to each other, 

i.e. the error one makes on using the averaged system instead of the original one is 

small for the asymptotically long time interval: 

2

1( ) ( )
C tx t t C e (IV.7) 

Proof

 The proof is very similar to that in Appendix III. The only difference is the ne-

cessity to estimate the term 
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1

3 1 2

0

1

1 2

0

N T

n TN

n nT

N E g t f x E g t f x dt

E g t f x E g t f x dt

(IV.8) 

 According to (IV.1) and (IV.5) the following inequality is valid: 

, f Z

df df df
x Z x t E g t f x M

dt dx dx
(IV.9) 

It follows from the condition (IV.6) and the theorem on the existence and dif-

ferentiability of the implicit function [98] that the following equation has in each 

interval , 1t nT n T the m differentiable solutions satisfying the 

Lipschitz-condition and the corresponding constant is: 

0 ,
f

i i tg t f x t t x
G

(IV.10) 

 Applying (IV.9) and (IV.10) to (IV.8) we obtain 

1

3 1 2

0

1 2 1 2

0 1

n TN

n nT

N m
f

i i

n i

N E g t f x E g t f x dt

t x t x m x x
G

(IV.11) 

The remaining proof is trivial: 
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0

0

0

0

,

, ,

,

,

t

t

t

t

x Z x E g f x d

Z x Z E g f x d

Z x E g f x E g f d

Z E g f d

(IV.12) 

The first term here can be estimated according to (IV.4). The relationship 

(IV.11) can be applied to the second term. The last one can be estimated exactly 

like in the standard averaging. Finally the Gronwall’s lemma accomplishes the 

proof. 
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Appendix V: Averaging of Systems with Small 
Discontinuities of the Unknown Function 

Lemma (the Gronwall’s lemma for sequences) 

Consider the sequence of inequalities 

0

, 1, 2,
k

k i i

i

w a w b k (V.1) 

Suppose

0, 1 0, 0, 1,2,k kw a b k (V.2) 

Then the following inequalities are also fulfilled: 

0

1
k k

i

i

b
w

a
(V.3) 

Proof

Let us introduce k k kz w a  and rewrite the inequalities (V.1) as follows 

0

k

k k i k

i

z a z ba (V.4) 

The next step of the proof can be done by induction. Consider 1n :

0
0 0 0 0 0

01

ba
z a z ba z

a
(V.5) 

 For 2n  we obtain 

1 1 0 1 1

1 0 1 1 1
1 1

1 0 1

0

1 1 1
1 i

i

z a z z ba

a z ba ba ba
z

a a a
a

(V.6) 

Suppose for certain k  the following inequality is fulfilled: 
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0

1

k
k k

i

i

ba
z

a
(V.7) 

Consider the next element 1kz :

1

1 1 1 1 1 1 1

0 0

1 1
1

0 01 1

0

1
1 1

1

k k

k k k i k k i k k

i i

k k
k k k

k i i
i ik k

j

j

z a b a z a b a z a z

a a b a
z b z

a a
a

(V.8) 

Consider the term in brackets: 

0

00 1 1 1

1 1 1 1
k k k kk

i i j i i

ii j i i i

a a a a a a

0

1

1
k

i

i

a a
1 1

1 1
kk

i j

i j i

a a

(V.9) 

Hence

1 1
1 1

1

0 0

1 1 1

k k
k k k

k j j

j j

a b a b
z

a a a
(V.10) 

We have proved the relationship (V.7) for 1k . Thus it is valid for an arbi-

trary k . Returning back to the variables kw  we obtain the required inequality. 

Remark (Relationship to the classical Gronwall’s lemma) 

Consider the case 

, 1, 1, 2,k

a
a n k

n
(V.11) 

Then the inequality (V.3) can be transformed as follows for large numbers 

k n :
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1

n n

b
w

a

n

(V.12) 

Now the classical estimate can be applied 

1

1 a
xax e (V.13) 

We use the transformation 

1 1
1

1

ax n a
a x

n

(V.14) 

Then the following estimate can be obtained: 

1

1 1

1 1

a
a aa

x
n n a

b be
w b ax be ax

a a

n n

(V.15) 

Now we can formulate and prove the following Theorem. 

Theorem

Consider a system 

, ,  if 2

if 2

1,2,

dx
X x t t n

dt

x x x f x t n

n

(V.16) 

Here
nRDx , x and x  are the values of the phase variables before and 

after the passage of the independent variable t  through the value 2 n .

Suppose

1. X  is a  measurable function of t  for constant x  and 

2. Function X  is 2 -periodic with respect to t .
t
 means the average. 

3. X  is a bounded Lipschitz-continuous function in x  on D , i.e. 
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1 2 1 2

, ,

, , , ,

X

X

X x t M

X x t X x t x x
(V.17) 

4. f x is bounded and Lipschitz-continuous in x  on D

1 2 1 2

f

f

f x M

f x f x x x
(V.18) 

5. All constants do not depend on .

6. Consider the averaged system alongside the original one. 

0, , 0
2

, , ,
t

f x

X t

(V.19) 

 Suppose its solution belongs to the interior subset of  D  on the t  scale 1 .

Under these conditions solutions of the initial value problems (V.16) and (V.19) 

are asymptotically close to each other, i.e. 

2

1

C tx C e (V.20) 

Proof

The proof is similar to that in Appendix I. (We omit the dependence of X  on 

 in order to shorten the notation.) 

We estimate the difference between the solutions to (V.16) and (V.19): 

0

0 0

00

00 0

,

1

2

, ,

1
,

2

t

tN

i

t N

i

t tN

i

x X x d

f x i f d

X x X d f x i f i

X d f i f d

(V.21) 
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Here 2N t  is the number of discontinuous jumps in the considered 

time interval. 

The first two terms in (V.21) can be estimated according to the assumptions 

(V.17) and (V.18). The time interval can be increased to an integer number of pe-

riods:

2 1

0 0

0

2 1

0 0

,

2 2

1
2

2

Nt

X

N

f

i

NN

i

x x d X d

x i i

f i f d

(V.22) 

Let us denote 2 ii . Notice that according to the definition of  the 

following relationship is valid: 

2 ( 1)

2

2 ( 1)

2

, 0;

1
0; 1, 2,3,

2

i

i i

i

i

i i

i

X d

f f d i

(V.23) 

The second term in (V.22) can be estimated exactly as in Appendix I: 

1

0

2 1

0 2

2 1

0 2

2 1

0 2

,

, ,

2

N

iN

i

i i

iN

i

i i

iN

X i

i i

X d

X X d

d

d

(V.24) 

Let us estimate the last term in (V.22): 
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2 1

0 0

2 ( 1) 2 ( 1)

0 02 2

1
2

2

1

2 2

NN

i

i iN N
f

i i

i ii i

f i f d

f f d d

(V.25) 

Inserting (V.24) and (V.25) into (V.22) we obtain 

00

2 1

0 2

2

2
2

t N

X f i

i

iN
f

X i

i i

x x d x i

d

(V.26) 

Integrating the equations (V.19) for one period we obtain: 

, , 2
2

2

i

i X f

f i

M M

(V.27) 

Thus the estimation (V.26) can be transformed as follows: 

00

2

2

4 2 1

t N

X f i

i

X f X f

x x d x i

M M N

(V.28) 

In particular we can estimate the difference 2k kw x k :

0 0

2 4 2 1

tk

k f i X

i

X f X f

w w x d

M M N

(V.29) 

Applying the Gronwall’s lemma for sequences we obtain: 
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0

2

1

4 2 1
1

t

X
k k

f

X f X fk

f

w x d

M M N

(V.30) 

We must also estimate the following term: 

0 0

1 1 1

1 1 1

N N

i N N
i i

f f f

N
(V.31) 

Substituting this inequality into (V.28) we get: 

0

2

1
1

1

1
4 2 1 1

1

t
f

X N

f

f

X f X f N

f

N
x x d

N
M M N

(V.32) 

Now the classical Gronwall’s lemma can be applied: 

2

1

1

2

1
4 2 1 1

1

1
1

1

C t

f

X f X f N

f

f

X N

f

x C e

N
C M M N

N
C

(V.33) 

This estimation accomplishes the proof of the theorem. In particular for 

0 0, 1N O  we can apply (V.15) and obtain the last estimate: 

1

2

4 2 1

1

X f X f f

X f

C M M O

C O
(V.34) 



www.manaraa.com

328      Appendixes 

Appendix VI: Averaging of Variable Order Discontinuous 
Systems

Theorem 1 

(The following theorem and its proof are based on [33].) 

Consider a system described over certain times by differential equations, and at 

other time intervals by differential and finite relations of the following form: 

0

, , ,

, , ,

2 2 , , 0,1, 2,

0

x X x yM t t

yM t Y x yM t t M t

y n G x n n

x x

(VI.1) 

Here M t  is a 2 -periodic piecewise constant function: 

1, 0
, 2

0, 2

t
M t M t M t

t
(VI.2) 

Consider the averaged system alongside with (VI.1): 

0

, , , , ,

,

0

t
X M t t

G

x

(VI.3) 

Here
2 2 1: ; : ; :k l k k l l k l

yX R R Y R R G R D R  and 

0 0, , ; , ; 0, ; 0,k l

x yx x D R y D R t .

Notice that the vector function y t  is a solution of an infinite sequence of 

systems of differential equation. Each of them is valid together with the continu-

ous equations for x  in the time intervals 122 ntn . In the time in-

tervals 2212 ntn  there are only equations for x . At the end of 

each of these intervals initial conditions for y  are reset. 

Suppose:

1. X  and Y  are measurable functions of t  for constant x , y  and .

2. All the functions are 2 -periodic with respect to t .
t
 means the time av-

erage:
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2

0

1

2t
f t f t dt (VI.4) 

3. X  and Y  are bounded Lipschitz-continuous functions in x  and y  on 

yx DD , i.e.: 

1 1 2 2

1 2 1 2

1 1 2 2

1 2 1 2

( , , , ) ; ( , , , )

( , , , ) ( , , , )

( , , , ) ( , , , )

X Y

XX XY

YX YY

X x yM t t M Y x yM t t M

X x y M t t X x y M t t

x x y y M t

Y x y M t t Y x y M t t

x x y y M t

(VI.5) 

4. G  is a bounded function, satisfying Lipschitz-condition in x  on xD  together 

with its first partial derivatives with respect to x , i.e. 

1 2

1 2 1 2

1 1 2

( , )

( , ) ( , )

( , ) ( , )

G

G

G

x x

G x t M

G x t G x t x x

G x t G x t
x x

x x

(VI.6) 

5. All constants do not depend on and belongs to the interior subset of xD
on the time scale 1 .

Then the solutions to (VI.1) and (VI.3) are asymptotically close to each other, 

i.e. the error one makes if using the averaged system instead of the original one is 

small for the asymptotically long time interval: 

2

4

2

1

2

3

C t

C t

x C te

yM t M t C te M t
(VI.7) 

Remark

Here and further we use the alternative approach for proving the averaging, which 

is much closer to the basic idea of almost identical transformations. 
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Proof

The main idea of the proof is to redefine system (VI.1) in the domain where 

0M t :

1 1 1

1 1 1 1 1

1 1 1 0

, , ,

, , , 2 , , 1

2 2 , , 0

x X x y M t t

y Y x y M t t H x y M t

y n G x n x x

(VI.8) 

Here ,, 11 yxH  is an arbitrary bounded function satisfying the Lipschitz-

condition. It will be specified later. Due to the uniqueness of the solution of the 

initial value problem, the solutions to (VI.1) and to (VI.8) are identical in the fol-

lowing sense: 

1 1;x x y M t yM t (VI.9) 

Now the standard averaging procedure can be applied to the system (VI.8). It 

means the almost identical change of variables 

1 1 1 1

1 1 1 1

, , ,

, , ,

x u t

y v t
(VI.10) 

Here u  and v  are periodic functions of t , their average is zero. The condi-

tions for standard averaging are fulfilled here and the functions u  and v  can be 

chosen as follows: 

1 1

1 1

1 1

0

1 1

0 0

, , ,

, , ,

, , ,

, , , 1 2

t

t

t

t t

X M t t

Y M t t

u X M d

v Y M d H M d

(VI.11) 

The integration here is performed with respect to the explicitly appearing time 

and takes M t  into account. 

The arbitrariness of the function H  can be used now. We choose it as follows: 
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1

1 1

1

,
, ,

G
H (VI.12) 

The new variables 11 , are governed by the equations 

2

1 1

2

1 2

1

1 1 32 2 ,

R

G
R

n G n R

(VI.13) 

Here 1 2,R R  and 3R  are the residuals. In order to estimate them let us firstly 

estimate the following terms: 

1 1 2 2 1 2 1 2

1 1 2 2 1 2 1 2

1

1 1

1

;

, , , ,

, , , ,

;

2 ; 2 2 2

2 ; 2

2 2 2

X Y

XX XY

G X Y

HX HY

HX YX G XX G X HY YY G XY

X Y Y G X

XX XY

YX HX YX G XX

M M

H M M

H H

M

u M v M H M M

u u

v
1

1

2 2 2

G X

YY HY YY G XY

M

v

(VI.14) 

Now we can easily estimate the residuals. The first one is: 

1

1 1

4 4 2

XX XY

X XX Y G X XY

u u
R u v

M M M

(VI.15) 

The following estimation is valid for the second one: 
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2

1 1

1

4 4 2

4 2

4 2 2

YX HX YY HY

X YX HX Y G X YY HY

X YX G XX G X

Y G X YY G XY

R u v

v v

M M M

M M

M M

(VI.16) 

And finally for 3R  we obtain the following estimate: 

3 2 2

4 4

G G X Y

G X Y

R u v M M H

M M
(VI.17) 

Considering the second equation in (VI.13) together with the corresponding ini-

tial conditions we can notice that the following equations are valid for 1 :

1 12

1 2 1

1

1 1 3

, ,

2 2 , , 0,1, 2,

dG G
R R

dt

n G n R n

(VI.18) 

This is a sequence of systems of differential equations. Each of them is valid in 

the time interval 122 ntn  and has its own initial conditions. Inte-

grating the system (VI.18) and taking the finiteness of each time interval into ac-

count the following relationship can be obtained: 

1 1 4

2

4 3

,

2 8 G X Y

G R

R R M M
(VI.19) 

The last relation is valid for all times. Substituting (VI.19) into the first equa-

tion of the system (VI.13) and using the fact that the function also satisfies 

Lipschitz’ conditions, we obtain the final form of the averaged equations: 

2

1 1 1 5 1 0

1 1 4

, , , , 0

,

G R x

G R
(VI.20) 

The following estimate is valid for the last residual 5R :
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5 1 4

2

4 4 2

8

X XX Y G X XY

G X Y

R R R M M M

M M
(VI.21) 

Notice that the system (VI.20) is equivalent to the original system (VI.1) at all 

times. Consider now the shortened system (VI.3) alongside the complete system 

(VI.20) and estimate the difference between their solutions: 

1 2

1 5XX XY G

d
R

dt
(VI.22) 

Applying the classical Gronwall’s lemma we obtain the final estimate: 

2

1 5
XX XY G t

R te (VI.23) 

It guaranties the required asymptotic accuracy of the averaged system (VI.3). 

Explicit expressions for the constants 1 2 3 4, , ,C C C C can be easily obtained if one 

takes the estimations for the residuals into account. The proof is accomplished. 

This theorem can not be applied directly to variable order discontinuous sys-

tems but it can be obviously generalized as follows. 

Theorem 2

Consider following problem: 

1 1

0

1 1 1 1

1

1 1

1 1 1

1 1

, , , , , ,

0

, , , , , , , ,

, ,

, ,

, , , , , , ,

2

1 , , , , , ,

2 , ,

n n n n

n

n n n

x X x yM z zM z

x x

yM z Y x yM z zM z M z

y t G x t G x t t

zM z M z

Z x yM z zM z M z

z t n

x yM z zM z

t n F x t t

(VI.24) 

Here x  and y  are, as before, vector functions of arbitrary finite dimensions, 

z  and  are scalar phases, the requirements on the functions ,X Y  and G  are 
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the same as in the Theorem 1, the function F  has in addition bounded partial de-

rivatives with respect to its first two arguments. 

The function ,1 zM  is defined as follows (see Fig. AVI.1): 

1

1, 0
, , 2 ,

0, 2

z
M z M z M z

z
(VI.25) 

The switch point  may depend on slow variables: zyx ,, , but 

it should remain in the interval 0, 2 . Otherwise function 1M  would 

not be defined correctly. 

1M

z2

1

1M

z2

1

Fig. AVI.1. On the definition of the function 1M

Consider the averaged system alongside (VI.24): 

1 1

1 1

1 1

, , , , , , ,

, , ,

, ,

1

X G M M

M G M

M M
(VI.26) 

The solutions to (VI.24) and (VI.26) are asymptotically close to each other, i.e. 

the error one makes on using the averaged system instead of the original one is 

small for the asymptotically long time interval 1t O :

1

1

,x O y M O

z M O
(VI.27) 

Proof

The proof of this theorem is almost trivial, because the system (VI.24) can be 

transformed to the form (VI.1).  
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A new fast rotating phase F1  and a new slow variable 1z

can be introduced. The next step is to change to the phase 

2

1

1

1

1

2

2
, 2 2

2
1 , 2 2 1

2

n

n
n n

n
n n

(VI.28) 

The following discontinuous frequency corresponds to this new phase: 

2

2

, 2 2 1

, 2 1 2 1
2

n n

U

n n

(VI.29) 

Considering now 2 as the independent variable, the following system can be 

obtained: 

2

2

2 2

2

2 2

2 2 ,

2 0

X
x O

U

Z
M O M

U

Y
y M O M

U

y n G x n O

n

(VI.30) 

The required estimates (VI.27) can be obtained now applying Theorem 1 to the 

system (VI.30) and returning back to the original variables. The only important re-

striction is that during the whole time of the system’s evolution the variable  is 

not allowed come in the -vicinity of zero or 2 . Otherwise the new phase 

2 would become discontinuous. This circumstance is not connected with the 

proof procedure but it displays the important internal essence of the considered 

problem. 
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Appendix VII: Hierarchic Averaging in Systems with a 
Semi Slow Rotating Phase 

(The following analysis is based on [86].)  

Consider the following system 

1 2

, , ,

, , , , ,

x X x t

A x A x t
(VII.1) 

Suppose

1. The functions 1 2, ,X A A are 2 -periodic with respect to t  and , bounded 

and satisfy together with their first partial derivatives Lipschitz-conditions with 

respect to the arguments x  and .

2. Variable  is the semi slow phase, i.e. the function 1A  is separated from zero: 

1 0 00,A A A const (VII.2) 

3. All other conditions are the same as in the first Bogoliubov’s theorem for stan-

dard averaging. 

Let us formulate the hierarchic averaging procedure. As usual, it is based on the 

almost identical transformation 

1 1 1

1 1 1 1 2 1 1

, , ,

, , , , ,

x u t

w t w t
(VII.3) 

The corresponding equations governing the new variables 1  and 1  have the 

following form: 

3
2

1 1 1

3
2

1 1 1 1 2 1 1

, , 1

, , , 1

O

B B O
(VII.4) 

These equations are obtained as the second order approximation for averaging 

with respect to t . The functions in (VII.4) are: 
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1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

0

1
2 1 1 2 1

1

, , , , ,

, , ,

, , ,

, ,

t

t

t

t

X t

B A t

w A B d

A
B A w

(VII.5) 

It is necessary to notice, that 1B  is similarly to 1A  a function which is sepa-

rated from zero and 2 -periodic with respect to 1 . It means that 1  is the semi 

slow phase. The second step of the hierarchic averaging scheme is the averaging 

with respect to this phase, performed as usual by means of the following almost 

identical transformation: 

1 2 2 2

1 2 2 2

, ,

, ,

p

q
(VII.6) 

Here p  and q are bounded 2 -periodic functions of 2 with zero average. 

The corresponding governing equations are: 

3
2

2 2

3
2

2 1 2 2 2 2

, 1

, , , 1

P O

B O
(VII.7) 

Here

2

2
2

2

0

2 2

2

1 2 2

1
2 2 2

2
2 2 2

1 2 2

1 2 2

2 2

2 2

1 2

, ,
,

,

, ,
1

,
, 1

,

, , ,
, ,

,

P
B

B
p B

B

B

P
p d

B

(VII.8) 
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The system (VII.7) is absolutely equivalent to the original system (VII.1). Now 

we are going to consider the shortened system 

1 2

,

, , ,

P

B
(VII.9) 

Notice that we have averaged only the equations for . The equation for 

still contains , i.e. the system (VII.9) is not completely autonomous. 

The following theorem estimates the difference between the solutions to the full 

and shortened systems. 

Theorem

Under the formulated conditions the following estimates fir the relationship be-

tween the solutions of the systems (VII.7) and (VII.9) are valid for the time inter-

val /1O :

1

1

x C

C
(VII.10) 

Notice that the mistake in the phase is not small but limited. The mistake in the 

slow variables remains small at the very long time interval. 

Proof

The difference 2 can be estimated by means of the Gronwall’s lemma 

quite easily: 

3
2

2 2

0

3
2

2

0

3
2

2

, , 1

1

1 P

t

t

P

t

P P dt O t

dt O t

O te

(VII.11) 

This estimation guarantees the accuracy of O  for the variable  on the 

time interval /1~ Ot .

In order to estimate the difference 2  one can divide the corresponding 

equations (VII.7) and (VII.9): 
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2

2 2

1 2

, , , , 1

, , , , ,

dd

O (VII.12) 

According to (VII.11) on the considered time interval 12 O ,

function  is bounded, differentiable and separated from zero. Thus the relation-

ship (VII.12) can be rewritten as follows: 

2
2

2 2 2

1 1
, , , ,

dd
O d O d (VII.13) 

The variables  and 2  satisfy the same initial condition: 

02 00 . Thus the last equation can be integrated: 

2 2

0 02 2 2

0 2 0

, , , , , ,

1 1

dg dg dg

g g g

O O

(VII.14) 

Due to the condition, that the function  is separated from zero, the last rela-

tionship leads directly to the following estimate: 

2 01O (VII.15) 

It is clear from the last equation in (VII.9) that 10 tO . Conse-

quently 

2 1tO (VII.16) 

Taking now the transformations (VII.3) and (VII.6) into account we obtain the 

required estimates for the time interval /1O  and accomplish the proof of the 

theorem. 

Remark 1 

The quantitative estimates of the mistakes can be obtained totally similar to 

those in Appendix VI.  

Remark 2 

The described hierarchic averaging can be combined with all the averaging 

procedures for discontinuous systems discussed in Appendix III – Appendix VI. 
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Appendix VIII: Averaging in Systems with Strong High 
Frequency Excitation 

(The following analysis is based on [34].)  

Theorem

Consider the system 

0 00 0

, , , , , , ,

, ; 1 1
t t

x F x x t x x t t

x x x v
(VIII.1) 

Suppose:

1. The functions F  and  together with their first partial derivatives are 2 -

periodic with respect to , bounded and satisfy Lipschitz-conditions with re-

spect to the arguments x  and x .

2. The functions F  and  are measurable functions with respect to t  and .

3. The function has in addition bounded and Lipschitz’-continuous second 

partial derivatives with respect to the arguments x  and x .

4. The symbol  means averaging with respect to .

5. 1 is the large parameter. 

6. The general 2 - periodic with respect to  bounded solution to the system of 

n first order differential equations is known: 

, , , , , , , , ,
u

X u t u X t X u U X X t (VIII.2) 

This solution satisfies the Lipschitz’ conditions together with its first partial de-

rivatives with respect to X and X .

7. The fundamental matrix of solutions for the following linear homogeneous sys-

tem is known, bounded and its determinant does not depend on  and is not 

equal to zero 

; det 0

T

TW
W W

x
(VIII.3) 

8. The following determinant is not equal to zero: 

det 0T U
W

X
(VIII.4) 



www.manaraa.com

Appendix VIII: Averaging in Systems with Strong High Frequency Excitation      341 

Consider together with (VIII.1) a system of ordinary differential equation, 

which does not contain the fast time 

0 00 0, 00

, , , , ;

,
t tt

M X X t X V X X t

X x X v
(VIII.5) 

0

, , ;

, , , , ,

T

T

T

U
M X X t W U X d

X

V X X t W F X U t

U U
W X

X X t

(VIII.6) 

Under these assumptions the difference between the solutions of the original 

system (VIII.1) and the averaged system (VIII.5), (VIII.6) remains small for the 

asymptotic long time interval with respect to the fast time O .

Proof

We perform the following transformation: 

, , , , , ,

, , ,
, , , , , ,

x t v t t

t
x t w t t

(VIII.7) 

The functions , , , ,v w   have to be chosen in order to obtain the “slow” 

governing equations for the variables and . The result is: 

v v v v
w

t
(VIII.8) 

2 2 2 2

2

1

, , ,

1
, , ,

w w

t

w w
F v w t

t

v w t

(VIII.9) 
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Balancing the terms of the same magnitude order one obtains: 

2

2
, , ,t (VIII.10) 

2 2 2

1

, ,

, , ,

u

w

t

F t v w R
x x

(VIII.11) 

Here 1 1R O  is a residual which can be estimated due to the assumptions 1 

and 3.

Consider the equation (VIII.10). It can be transformed to the following form: 

, , , ,
u

u t u (VIII.12) 

The function  must be periodic with respect to . Thus the average 

0 . According to (VIII.2) the solution to the system (VIII.12) is 

known:

0

, , ,u U t

U X d
(VIII.13) 

Consider the equations (VIII.11). The first of them is quite simple to solve: 

; v V t (VIII.14) 

Here V t is an arbitrary function of the slow time t . Then the second of the 

equations (VIII.11) can be rewritten as follows: 
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2 2 2

1

w
w F V

x x

R
t

(VIII.15) 

 Notice that the expression in brackets is the derivative with respect to  from 

the full partial derivative of ,t  with respect to t  (taking in account that 

depends on t  both directly and indirectly through and ). Thus one can 

rewrite (VIII.15): 

2

1

w
w F V R

x x t
(VIII.16) 

The necessary condition for the existence of the periodic solution to (VIII.16) is 

(cf. [98]): 

2

1 0TW F V R
x t

(VIII.17) 

The matrix *W  is defined in (VIII.3). It was shown in Chapter 9 that 

0TW
x

(VIII.18) 

Hence the equation (VIII.17) together with (VIII.14) can be rewritten as fol-

lows:

2

1

T T TW W F W R
x t

(VIII.19) 

Lastly, function depends on t  both directly and indirectly through functions 

X t and )(tX . Under t we understand here the “full” partial derivative 

with respect to t . Taking this into account and using the “partial” partial deriva-

tives we obtain the final explicit form of the equation (VIII.19): 
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2

1

,

T T

T

U U U
U

t t

U U U
W W F

x t

W R

(VIII.20) 

It is easy to show that all the functions here are limited and Lipschitz-

continuous. Thus we can apply the Gronwall’s lemma in order to compare the so-

lutions to the full system (VIII.20) and to the shortened equations (VIII.5), 

(VIII.6) and obtain the required estimate.  
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